Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How Invasive Plants Influence an Ecosystem


A research team uses the example of the acacia to show how interaction between native and invasive species varies

Acacia longifolia, a species of acacia from the Fabacean family that is native to Australia, was initially cultivated in Portugal as a means of securing sand dunes and is now spreading uncontrollably – with varying impact on native species.

Foto: Peter Burai

Since the plant can use nitrogen from the air on account of its symbiotic relationship with bacteria on its roots, and since it also grows rapidly and produces a lot of biomass, it enriches the naturally nutrient-poor dune ecosystem with nitrogen, leading to an undesirable fertilization effect.

In addition, it consumes more water than native species. The ecologists Prof. Dr. Christiane Werner, Christine Hellmann, and Dr. Jens Oldeland have developed a new approach published in the journal PLOS ONE for identifying the areas in which the acacia interacts with native species. The team determined that the invasive species has a negative effect on the development of some native species, while it has no effect on others and even causes several species to grow better.

The interactions between plants and their living and non-living environment has a decisive impact on the structure and function of ecosystems. To determine the strength and the spatial zone of influence of such interactions, the research team uses stable isotopes – heavy, non-radioactive forms of elements. The frequency with which these isotopes occur in materials in comparison to the much more common light isotopes can vary over space. The ratio of stable isotopes can therefore provide information on where and how a material originated.

So-called “isoscapes,” a portmanteau of “isotope” and “landscape,” represent in map form how isotopes are distributed in a landscape. The team used isoscapes based on the leaf material of native species to show where the proportion of nitrogen fixed by the acacia is high and where the invasive species influences the growth of other species – whether positively due to additional nitrogen or negatively due to competition for water. A dwarf shrub from the Ericaceae family, for example, exhibits greatly increased nitrogen concentrations and more efficient photosynthesis in a large radius surrounding acacia, while a stone pine uses only very small amounts of the additional nitrogen. A dwarf shrub from the Fabacean family, on the other hand, which can also use fixed atmospheric nitrogen, is not influenced by the acacia at all.

The results indicate that the interaction between the acacia and native plants is species-specific. In addition, the influence varies depending on the amount of nitrogen or water available to the species. In order to use this information to make a map integrating these various aspects, the scientists conducted a cluster analysis. This statistical method finds subgroups in the sampled area that exhibit a similar combination of the measured values, allowing them to be interpreted as zones of influence. The goal of these analyses is to better describe, elucidate, and understand the complex relationships and dynamics governing natural ecosystems.

Christiane Werner is a professor of ecosystem physiology at the University of Freiburg’s Faculty of Environment and Natural Resources. Her doctoral student Christine Hellmann conducts her research at the University of Bielefeld, and Jens Oldeland is a research assistant at the University of Hamburg.

Original publication:
Hellmann, Christine/Werner, Christiane/Oldeland, Jens: A Spatially Explicit Dual-Isotope Approach to Map Regions of Plant-Plant Interaction after Exotic Plant Invasion. In: PLOS ONE.

Prof. Dr. Christiane Werner
Faculty of Environment and Natural Resources
University of Freiburg
Phone: +49 (0)761/203-8303

Weitere Informationen:

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>