Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Invasive Plants Influence an Ecosystem

28.07.2016

A research team uses the example of the acacia to show how interaction between native and invasive species varies

Acacia longifolia, a species of acacia from the Fabacean family that is native to Australia, was initially cultivated in Portugal as a means of securing sand dunes and is now spreading uncontrollably – with varying impact on native species.


Foto: Peter Burai

Since the plant can use nitrogen from the air on account of its symbiotic relationship with bacteria on its roots, and since it also grows rapidly and produces a lot of biomass, it enriches the naturally nutrient-poor dune ecosystem with nitrogen, leading to an undesirable fertilization effect.

In addition, it consumes more water than native species. The ecologists Prof. Dr. Christiane Werner, Christine Hellmann, and Dr. Jens Oldeland have developed a new approach published in the journal PLOS ONE for identifying the areas in which the acacia interacts with native species. The team determined that the invasive species has a negative effect on the development of some native species, while it has no effect on others and even causes several species to grow better.

The interactions between plants and their living and non-living environment has a decisive impact on the structure and function of ecosystems. To determine the strength and the spatial zone of influence of such interactions, the research team uses stable isotopes – heavy, non-radioactive forms of elements. The frequency with which these isotopes occur in materials in comparison to the much more common light isotopes can vary over space. The ratio of stable isotopes can therefore provide information on where and how a material originated.

So-called “isoscapes,” a portmanteau of “isotope” and “landscape,” represent in map form how isotopes are distributed in a landscape. The team used isoscapes based on the leaf material of native species to show where the proportion of nitrogen fixed by the acacia is high and where the invasive species influences the growth of other species – whether positively due to additional nitrogen or negatively due to competition for water. A dwarf shrub from the Ericaceae family, for example, exhibits greatly increased nitrogen concentrations and more efficient photosynthesis in a large radius surrounding acacia, while a stone pine uses only very small amounts of the additional nitrogen. A dwarf shrub from the Fabacean family, on the other hand, which can also use fixed atmospheric nitrogen, is not influenced by the acacia at all.

The results indicate that the interaction between the acacia and native plants is species-specific. In addition, the influence varies depending on the amount of nitrogen or water available to the species. In order to use this information to make a map integrating these various aspects, the scientists conducted a cluster analysis. This statistical method finds subgroups in the sampled area that exhibit a similar combination of the measured values, allowing them to be interpreted as zones of influence. The goal of these analyses is to better describe, elucidate, and understand the complex relationships and dynamics governing natural ecosystems.

Christiane Werner is a professor of ecosystem physiology at the University of Freiburg’s Faculty of Environment and Natural Resources. Her doctoral student Christine Hellmann conducts her research at the University of Bielefeld, and Jens Oldeland is a research assistant at the University of Hamburg.

Original publication:
Hellmann, Christine/Werner, Christiane/Oldeland, Jens: A Spatially Explicit Dual-Isotope Approach to Map Regions of Plant-Plant Interaction after Exotic Plant Invasion. In: PLOS ONE.
http://dx.plos.org/10.1371/journal.pone.0159403

Contact:
Prof. Dr. Christiane Werner
Faculty of Environment and Natural Resources
University of Freiburg
Phone: +49 (0)761/203-8303
E-Mail: christiane.werner@cep.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-07-28.113-en?set_language=en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>