Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Human Cells Can Dissolve Damaging Protein Aggregates

11.08.2015

Heidelberg researchers decode fundamental mechanism using in-vitro experiments

Cellular repair systems can dissolve aggregated proteins and now Heidelberg researchers have successfully decoded the fundamental mechanism that is key to dissolving these protein aggregates in human cells.

Their in-vitro experiments uncovered a multi-stage biochemical process in which protein molecules are dissolved from the aggregates. Researchers at the Center for Molecular Biology of Heidelberg University, the German Cancer Research Center and the Heidelberg Institute for Theoretical Studies collaborated on the project, along with other scientists from Germany, the USA and Switzerland. The results of their research were published in “Nature”.

Proteins in all cells – from bacteria to human – are folded in their native state. Proteins are first manufactured as long, sequential chains of amino acids and must assume a specific three-dimensional structure, i.e., fold, to be functional. This correctly folded state, or protein homeostasis, is at constant risk from external and internal influences. Damaged proteins lose their structure, unfold and then tend to clump together.

“If such aggregates form, they can damage the cells and even cause the cells to die, which we see in neurodegenerative diseases such as Alzheimer’s and Parkinson’s, and even in ageing processes,” explains Prof. Dr. Bernd Bukau, Director of the Center for Molecular Biology of Heidelberg University (ZMBH), who is also a researcher at the German Cancer Research Center (DKFZ).

Prof. Bukau explains that damaged proteins do not only clump during the ageing process. Protein aggregates can also occur through changes in the protein structure due to mutation or chemical or environmental stresses. A change in growth conditions, such as an increase in ambient temperature, can cause proteins to lose their structure and unfold. “The formation of protein aggregates in different organs of the human body is associated with a large number of diseases, including metabolic disorders,” explains the ZMBH Director.

The researchers report that very little was known about how our natural defences reverse the process of protein aggregation so effectively in young healthy cells. “Dissolving protein aggregates is a critical step in recycling defective proteins and providing protection against stress-induced cell damage. We had several clues as to the main players in this process, but we didn’t know exactly how it worked,” says lead investigator Dr. Nadinath Nillegoda, a member of Prof. Bukau’s team. The researchers succeeded in identifying a previously unknown, multi-component protein complex that efficiently solubilizes stress-induced protein aggregates in vitro.

This complex consists of molecular folding helpers, the chaperones, which in this case belong to the heat shock protein 70 (Hsp70) class. These are proteins that aid other proteins in the folding process. The Heidelberg researchers also studied the co-chaperones that regulate Hsp70 activity in the protein complex. According to Prof. Bukau, the co-chaperones of the so-called J-protein family are key, in that they “lure” the Hsp70 folding helpers to the protein aggregates and activate them precisely at their target. “The key finding of our work is that two types of these J-proteins must dynamically interact to maximally activate the Hsp70 helper proteins to dissolve the protein aggregates. Only this launches the potent cellular activity to reverse these aggregates.”

Scientists from the Heidelberg Institute for Theoretical Studies (HITS) performed the computational data analysis for this research. For the experimental design and integrating the data from a range of experiments, they developed a special modelling methodology for protein-protein docking to simulate the formation of chaperone complexes. HITS research group leader Prof. Dr. Rebecca Wade, who also conducts research at the ZMBH, notes that this molecular-level modelling was essential for understanding the dynamic interactions underlying the coordinated activity of the two types of J-proteins in the chaperone complex.

According to Prof. Bukau, now research is faced with the challenge of understanding the physiological role and the potential of the newly discovered mechanism well enough to apply these findings from basic research and develop novel strategies for therapeutic interventions. In addition to scientists from the ZMBH, DKFZ and HITS, researchers from the Leibniz Institute for Molecular Pharmacology in Berlin, the Northwestern University in Illinois (USA) and the Swiss Federal Institute of Technology in Zurich (Switzerland) also participated in the work.

Original publication:
N. B. Nillegoda, J. Kirstein, A. Szlachcic, M. Berynskyy, A. Stank, F. Stengel, K. Arnsburg, X. Gao, A. Scior, R. Aebersold, D. L. Guilbride, R. C. Wade, R. I. Morimoto, M. P. Mayer and Bernd Bukau: Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature (published online 5 August 2015), doi:10.1038/nature14884

Contact:
Prof. Dr. Bernd Bukau
Centre for Molecular Biology of Heidelberg University
Phone: +49 6221 54-6850
direktor@zmbh.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.zmbh.uni-heidelberg.de/bukau/default.shtml

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Further reports about: Biology Cells Molecular Molecular Biology aggregates protein complex proteins

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>