Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How Human Cells Can Dissolve Damaging Protein Aggregates


Heidelberg researchers decode fundamental mechanism using in-vitro experiments

Cellular repair systems can dissolve aggregated proteins and now Heidelberg researchers have successfully decoded the fundamental mechanism that is key to dissolving these protein aggregates in human cells.

Their in-vitro experiments uncovered a multi-stage biochemical process in which protein molecules are dissolved from the aggregates. Researchers at the Center for Molecular Biology of Heidelberg University, the German Cancer Research Center and the Heidelberg Institute for Theoretical Studies collaborated on the project, along with other scientists from Germany, the USA and Switzerland. The results of their research were published in “Nature”.

Proteins in all cells – from bacteria to human – are folded in their native state. Proteins are first manufactured as long, sequential chains of amino acids and must assume a specific three-dimensional structure, i.e., fold, to be functional. This correctly folded state, or protein homeostasis, is at constant risk from external and internal influences. Damaged proteins lose their structure, unfold and then tend to clump together.

“If such aggregates form, they can damage the cells and even cause the cells to die, which we see in neurodegenerative diseases such as Alzheimer’s and Parkinson’s, and even in ageing processes,” explains Prof. Dr. Bernd Bukau, Director of the Center for Molecular Biology of Heidelberg University (ZMBH), who is also a researcher at the German Cancer Research Center (DKFZ).

Prof. Bukau explains that damaged proteins do not only clump during the ageing process. Protein aggregates can also occur through changes in the protein structure due to mutation or chemical or environmental stresses. A change in growth conditions, such as an increase in ambient temperature, can cause proteins to lose their structure and unfold. “The formation of protein aggregates in different organs of the human body is associated with a large number of diseases, including metabolic disorders,” explains the ZMBH Director.

The researchers report that very little was known about how our natural defences reverse the process of protein aggregation so effectively in young healthy cells. “Dissolving protein aggregates is a critical step in recycling defective proteins and providing protection against stress-induced cell damage. We had several clues as to the main players in this process, but we didn’t know exactly how it worked,” says lead investigator Dr. Nadinath Nillegoda, a member of Prof. Bukau’s team. The researchers succeeded in identifying a previously unknown, multi-component protein complex that efficiently solubilizes stress-induced protein aggregates in vitro.

This complex consists of molecular folding helpers, the chaperones, which in this case belong to the heat shock protein 70 (Hsp70) class. These are proteins that aid other proteins in the folding process. The Heidelberg researchers also studied the co-chaperones that regulate Hsp70 activity in the protein complex. According to Prof. Bukau, the co-chaperones of the so-called J-protein family are key, in that they “lure” the Hsp70 folding helpers to the protein aggregates and activate them precisely at their target. “The key finding of our work is that two types of these J-proteins must dynamically interact to maximally activate the Hsp70 helper proteins to dissolve the protein aggregates. Only this launches the potent cellular activity to reverse these aggregates.”

Scientists from the Heidelberg Institute for Theoretical Studies (HITS) performed the computational data analysis for this research. For the experimental design and integrating the data from a range of experiments, they developed a special modelling methodology for protein-protein docking to simulate the formation of chaperone complexes. HITS research group leader Prof. Dr. Rebecca Wade, who also conducts research at the ZMBH, notes that this molecular-level modelling was essential for understanding the dynamic interactions underlying the coordinated activity of the two types of J-proteins in the chaperone complex.

According to Prof. Bukau, now research is faced with the challenge of understanding the physiological role and the potential of the newly discovered mechanism well enough to apply these findings from basic research and develop novel strategies for therapeutic interventions. In addition to scientists from the ZMBH, DKFZ and HITS, researchers from the Leibniz Institute for Molecular Pharmacology in Berlin, the Northwestern University in Illinois (USA) and the Swiss Federal Institute of Technology in Zurich (Switzerland) also participated in the work.

Original publication:
N. B. Nillegoda, J. Kirstein, A. Szlachcic, M. Berynskyy, A. Stank, F. Stengel, K. Arnsburg, X. Gao, A. Scior, R. Aebersold, D. L. Guilbride, R. C. Wade, R. I. Morimoto, M. P. Mayer and Bernd Bukau: Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature (published online 5 August 2015), doi:10.1038/nature14884

Prof. Dr. Bernd Bukau
Centre for Molecular Biology of Heidelberg University
Phone: +49 6221 54-6850

Communications and Marketing
Press Office, phone: +49 6221 54-2311

Weitere Informationen:

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Further reports about: Biology Cells Molecular Molecular Biology aggregates protein complex proteins

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>