Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How gerbils orient in the light of the setting sun

22.01.2015

A light brown remains light brown: For gerbils, the fur color of their conspecifics appears identical under different lighting conditions. The ability of color constancy in rodents has been demonstrated for the first time by Munich neurobiologists. The findings are published in the current issue of the Journal of Vision.

A green apple is green, but the green is not always the same. In varying light conditions—like at sunset—the spectrum of the light that is reflected by the fruit and falls on our retina, changes. Nevertheless, we continue to perceive the color of the apple as green because the human brain compensates for the influences of illumination by evaluating the color and brightness composition across the entire visual field.


A dark-colored gerbil (figure A, top right) recognizes its dark fellow, although due to the shadow the fur of the light brown animal (bottom left) has a more similar spectral composition (figure B).

Copyright: Association for Research in Vision and Ophthalmology, 2015

This capacity is known as color and brightness constancy and is important for object recognition. Researchers at the Bernstein Center Munich and the LMU Munich, led by Kay Thurley and Thomas Wachter, have now investigated whether rodents also possess this remarkable perceptual ability.

In the study, the researchers showed gerbils colored patches on different colored backgrounds. The animals were looking at a screen while sitting on a sphere that worked like a treadmill. They were thus able to virtually move towards the stimuli and select one of it as response.

During the experiment, half of the animals had to identify the object in which the patch appeared more greenish than its background. The other animals had to identify the object they perceived as bluish compared to its background. When the rodents gave the correct answer, they received a food reward.

"The gerbils reliably recognized the correct patches despite varying color compositions across the experimental trials," explains Thomas Wachtler. Hence, under different lighting conditions the rodents consistently perceive a green apple or a brown fur as green or brown, respectively.

Moreover, they also perceive the brightness of an object as constant, as the researchers demonstrated in another experiment. Gerbils are thus the first rodents shown to have the ability of color and brightness constancy. The result suggests that other animals may possess this perceptual ability, too.

"For gerbils, which are diurnal and crepuscular animals, the ability to accurately identify objects despite changing lightning conditions is essential for survival. They orient using their sense of vision to forage or recognize conspecifics," says Kay Thurley, main author of the study. The result has significant implications for neurobiology: "Gerbils are a popular animal model in auditory neuroscience. But in contrast to other rodents, gerbils also have well developed vision, making these rodents especially suitable for experiments in virtual realities," Thurley says.

The Bernstein Center Munich is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
PD Dr. Thomas Wachtler
LMU Munich
Department Biology II
Großhaderner Straße 2
82152 Martinsried
Tel: +49 (0)89 2180 74810 

Email: wachtler@bio.lmu.de

Dr. Kay Thurley
LMU Munich
Department Biology II
Großhaderner Straße 2
82152 Planegg-Martinsried
Tel: +49 (0)89 2180 74823
E-Mail: thurley@bio.lmu.de

Original publication:
C. Garbers, J. Henke, C. Leibold, T. Wachtler & K. Thurley (2015): Contextual processing of brightness and color in Mongolian gerbils. Journal of Vision, 15(1), 1 – 13.
doi: 10.1167/15.1.13

Weitere Informationen:

http://www.bccn-munich.de/people/kay-thurley Webpage Kay Thurley
http://neuro.bio.lmu.de/research_groups/res-wachtler_th Webpage Thomas Wachtler
http://www.uni-muenchen.de LMU Munich
http://www.bccn-munich.de Bernstein Center Munich
http://www.nncn.de/en National Bernstein Network Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>