Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How experience may lead to misperception

23.04.2015

Distance, volume, brightness or duration—when judging magnitudes, we make systematic errors. A new model of Munich researchers combines two competing classical theories of magnitude estimates and attributes prior experience to play an important role. The study has been published in the current edition of the journal Trends in Cognitive Sciences.

How long is the way from the city hall to the train station? When we estimate distances, something curious happens: short distances seem longer, and long distances shorter than they really are. Similar biases occur during judgments of volume, brightness or time.


When judging distances, short distances seem longer than they really are. To explain this estimation bias, Munich neuroscientists have developed a new theoretical model.

Copyright: Mareike Kardinal / Bernstein Coordination Site, 2015

Psychologists call this phenomenon Vierordt’s law. Its independence of the involved sensory systems suggests that our brain possesses universal principles for the assessment of physical quantities. However, where do the characteristic estimation biases stem from? In collaboration with colleagues from Zurich, neuroscientists at the Bernstein Center Munich and the LMU Munich provide a new explanatory model, in which previous experience holds an important role.

“Our approach is based on probability theory and allows to reinterpret and combine two seemingly contradictory classic theories,” explains Stefan Glasauer, one of the authors of the study. The first theory of magnitude estimation is the Weber-Fechner law proposed in 1860. Some 100 years later, Stanley Smith Stevens introduced a power law and asserted that it was incompatible with the Weber-Fechner law.

This opinion is now disproved: “Using Bayes’ theorem from classical probability theory, both theories can be integrated into a new model,” Glasauer says.

In contrast to the previous approaches, the new model of the brain researchers also takes into account how prior knowledge affects the judgment of physical quantities. “We automatically gain experience with each magnitude estimation. This knowledge certainly affects subsequent estimates and is one of the causes leading to systematic estimation biases,” Glasauer explains.

In the process, learning occurs unconsciously and requires no feedback on the success of the assessment. “We hope that our approach will serve to better understand the neurobiological mechanisms of magnitude judgments,” Glasauer concludes.

The Bernstein Center Munich is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 180 million Euros. The network is named after the German physiologist Julius Bernstein (1835-1917).

Contact:
Prof. Dr. Stefan Glasauer
LMU Munich
Department of Neurology and Center for Sensorimotor Research
Feodor-Lynen-Str. 19
81377 Munich (Germany)
Tel: +49 (0)89 4400-74839
Email: sglasauer@lmu.de

Original publication:
F. H. Petzschner, S. Glasauer & K. E. Stephan (2015): A Bayesian perspective on magnitude information. Trends in Cognitive Sciences, 19(5), 285-293.
doi: 10.1016/j.tics.2015.03.002

Weitere Informationen:

http://www.bccn-munich.de/people/scientists-2/stefan-glasauer Stefan Glasauer
http://www.bccn-munich.de Bernstein Center München
http://www.uni-muenchen.de LMU Munich
http://www.nncn.de National Bernstein Network Computational Neuroscience

Mareike Kardinal | Nationales Bernstein Netzwerk Computational Neuroscience

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>