Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How does the brain develop in individuals with autism?

12.11.2014

New mouse model for autism: Mutated gene causes parts of the brain to degenerate, leading to behavioral deficits / Geneticists from Heidelberg publish study in Molecular Psychiatry / Better understanding can help deal with disease

Geneticists at Heidelberg University Hospital’s Department of Molecular Human Genetics have used a new mouse model to demonstrate the way a certain genetic mutation is linked to a type of autism in humans and affects brain development and behavior.

In the brain of genetically altered mice, the protein FOXP1 is not synthesized, which is also the case for individuals with a certain form of autism. Consequently, after birth the brain structures degenerate that play a key role in perception. The mice also exhibited abnormal behavior that is typical of autism. The new mouse model now allows the molecular mechanisms in which FOXP1 plays a role to be explained and the associated changes in the brain to be better understood.

“While these kinds of results from basic research cannot be directly translated into treatment, they are still quite valuable for the affected individuals or in this case, for their parents and family. For many of them, it is important to be able to specifically put a name to the disorder and understand it. It can make dealing with it easier,” said Professor Gudrun Rappold, Head of the Department of Molecular Human Genetics at Heidelberg University Hospital and senior author of the article.

The results have now been published in a preliminary online version in the journal Molecular Psychiatry in cooperation with Miriam Schneider, Institute of Psychopharmacology at the Central Institute of Mental Health in Mannheim, and Dr. Corentin Le Magueresse, German Cancer Research Center (DKFZ) and Professor Hannah Monyer, Department of Clinical Neurobiology, Heidelberg University Hospital and DKFZ in Heidelberg.

Autism is a congenital perception and information-processing disorder in the brain that is frequently accompanied by intellectual disability and in rare cases, superior intelligence and special gifts such as photographic memory. The disorder is characterized by limited social interaction, repetitive behavior and language impairment. Furthermore, a wide range of other disturbances can occur. “Today, in addition to the defect in the FOXP1 gene, we are familiar with other genetic mutations that cause autism or increase the risk of this kind of disorder. However, we are only able to understand how they affect the molecular processes in the neurons, brain development and behavior for a few of these mutations,” Rappold said.

This is also the case for FOXP1. Back in 2010, clear signs that structural flaws in this protein play a role in autism and mental disability had been discovered. But what role does it play in the healthy brain? What signal pathways is it involved in? Which other proteins does it interact with and exactly what damage is caused by its absence?

The new mouse model has helped to shed light on these questions. The researchers discovered that the mice were born with a normally developed brain for the most part. During the course of the first weeks of life, the striatum, which is important for perception and behavior, degenerates. In a centrally located brain structure as well – the hippocampus – which is indispensable for developing long-term memory and recall, microscopically visible changes occur that can also impact signal processing. It could be proven, for example, that in the affected neurons the impulse conduction is changed through which signals are transmitted between neurons.

In addition to the striatum, the ventricles of the brain are degenerated; these are adjacent structures in the murine brain. “Enlarged ventricles were also detected in humans with a FOXP1 mutation,” explained Dr. Claire Bacon, who works in the Molecular Human Genetics Department and is first author of the publication. The changes also trigger abnormal behavior that is comparable to the symptoms of autistic patients. The mice barely noticed their fellow mice and did not attempt to make contact to them. Further symptoms include stereotypical compulsive repetitive behaviors, hyperactivity and disturbed nestbuilding behavior.

The researchers now intend to study to what extent the communication of noise by FOXP1 mice (mice communicate via noises in the ultrasonic range) is impaired and whether there are also parallels to the disturbances in patients with FOXP1 mutation in this area as well. In addition, they plan to characterize the newly identified genes impacted by the FOXP1 in the brain and find out which signaling cascades and response paths are disrupted. In this way, they hope to find starting points for a specific treatment. “However, we first have to understand exactly how these changes occur before we can develop treatment concepts,” Rappold stressed.

Literature:
Brain-specific Foxp1 deletion impairs neuronal development and causes autistic-like behaviour. Bacon C, Schneider M, Le Magueresse C, Froehlich H, Sticht C, Gluch C, Monyer H, Rappold GA. Mol Psychiatry. 2014 Sep 30. doi:10.1038/mp.2014.116. [Epub ahead of print]

The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Bacon C, Rappold GA Hum Genet. 2012;131(11):1687-98.

More information is available on the Web:
Department of Molecular Human Genetics
http://www.klinikum.uni-heidelberg.de/Abt-Molekulare-Humangenetik.6096.0.html
Website of the FOXP1 Community
http://www.rareconnect.org/en/community/foxp1/understand

Contact:
Professor Gudrun Rappold
Department of Molecular Human Genetics
Heidelberg University Hospital
Tel.: 06221 / 56 50 59
Email: gudrun_rappold@med.uni-heidelberg.de

Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching
Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 12,600 employees, training and qualification is an important issue. Every year, around 66,000 patients are treated on an inpatient basis and around 1.000.000 cases on an outpatient basis in more than 50 clinics and departments with 1,900 beds. Currently, about 3,500 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.
www.klinikum.uni-heidelberg.de

Requests by journalists:
Julia Bird
Corporate Communication/Public Relations
University Hospital and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Germany
phone: +49 6221 / 56 70 71
fax: +49 6221 / 56 45 44
e-mail: Julia.bird@med.uni-heidelberg.de

Selected english press releases online:
http://www.klinikum.uni-heidelberg.de/presse 

Julia Bird | idw - Informationsdienst Wissenschaft

Further reports about: Bacon Department Genetics Human Genetics Molecular behavior disorder mouse model neurons

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>