Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do we perceive textiles?

16.11.2015

"Touché" – a European research consortium is examining how we perceive textile materials on our skin.

Earlier this year, the European research project "Touché" was set up, with the title "Boosting innovation through application of a basic understanding of the process and testing of textile touch and fabric feel".


To study human-textile interaction, the Hohenstein Institute has developed a synthetic skin called HUMskin.

©Hohenstein Institute


With the help of the electromechanical textile applicator SOFIA 2, textiles can be applied to the skin in different parts of the body in a standardised way, with varying pressure and speeds.

©Hohenstein Institute

The joint German-Belgian project, part of the CORNET (Collective Research Networking) undertaking by the "Otto von Guericke" e.V. Federation of Industrial Research Associations (AiF, No. 137 EN), is addressing as yet unresolved issues relating to the interaction between human skin and textiles, and how textiles are perceived.

The German research team at the Hohenstein Institute is focusing specifically on the interactions and perception of textiles on the surface of the human body, that is to say, while wearing clothing. This is described as the "fabric feel".

At the same time, the project partners from the University and University College Ghent are investigating whether the way that textiles feel when you actively touch them (the so-called "hand of touch” or "textile touch") can be scientifically measured.

By taking this broadly-based approach, the researchers will be able to study the ways in which the haptic stimuli that we experience when taking hold of a textile differ from the tactile stimuli experienced during the passive wearing of clothing.

In the process, they want to identify those textile parameters which affect human perception. This is important in order to be able to make technical predictions along the textile production chain, and so understand how the textiles will be experienced by the user.

For the purposes of their research into the interactions between textiles and humans, the scientists at Hohenstein have developed their own synthetic skin called "HUMskin" in their Life Sciences department. This has many of the same physiological properties as human skin and the same surface profile as the outermost layer of our skin.

With the help of HUMskin, wearing experiences on the human body can be realistically simulated in the laboratory and the effects of different kinds of friction (e.g. static and dynamic friction) on the skin can be accurately measured. In the Touché project, this so-called tribological data, in combination with 3D data at microscopic level, is delivering a detailed understanding of materials and the values that can be expected for friction processes, and how textiles are perceived on the skin.

At the same time, also as part of the project, the Hohenstein Institute's electromechanical textile applicator SOFIA has been further refined (SOFIA = Standardised Operating FabrIc Applicator). SOFIA 2 is now able to apply textile samples to different parts of volunteers' bodies at different speeds and pressures, and SOFIA 2 can also simultaneously measure the friction coefficients during the application.

SOFIA enables textile samples to be applied to volunteers in an entirely standardised way. In order to evaluate the volunteers' perceptions of the textiles objectively, the electrical activity that occurs spontaneously and subconsciously in their brains while the textile samples are being applied is measured using electroencephalography (EEG). Preliminary neurophysiological tests using 64-channel EEG have already shown that the human brain is capable of detecting textiles which have pleasant or unpleasant surface properties.

Contact:
Sandra Reich
Hygiene, environment and medicine
Tel.: +49 7143 271 771
Fax: +49 7143 271 94 771
Email: S.Reich@hohenstein.de
Website: www.hohenstein.de

Marianna Diener | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>