Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do we perceive textiles?

16.11.2015

"Touché" – a European research consortium is examining how we perceive textile materials on our skin.

Earlier this year, the European research project "Touché" was set up, with the title "Boosting innovation through application of a basic understanding of the process and testing of textile touch and fabric feel".


To study human-textile interaction, the Hohenstein Institute has developed a synthetic skin called HUMskin.

©Hohenstein Institute


With the help of the electromechanical textile applicator SOFIA 2, textiles can be applied to the skin in different parts of the body in a standardised way, with varying pressure and speeds.

©Hohenstein Institute

The joint German-Belgian project, part of the CORNET (Collective Research Networking) undertaking by the "Otto von Guericke" e.V. Federation of Industrial Research Associations (AiF, No. 137 EN), is addressing as yet unresolved issues relating to the interaction between human skin and textiles, and how textiles are perceived.

The German research team at the Hohenstein Institute is focusing specifically on the interactions and perception of textiles on the surface of the human body, that is to say, while wearing clothing. This is described as the "fabric feel".

At the same time, the project partners from the University and University College Ghent are investigating whether the way that textiles feel when you actively touch them (the so-called "hand of touch” or "textile touch") can be scientifically measured.

By taking this broadly-based approach, the researchers will be able to study the ways in which the haptic stimuli that we experience when taking hold of a textile differ from the tactile stimuli experienced during the passive wearing of clothing.

In the process, they want to identify those textile parameters which affect human perception. This is important in order to be able to make technical predictions along the textile production chain, and so understand how the textiles will be experienced by the user.

For the purposes of their research into the interactions between textiles and humans, the scientists at Hohenstein have developed their own synthetic skin called "HUMskin" in their Life Sciences department. This has many of the same physiological properties as human skin and the same surface profile as the outermost layer of our skin.

With the help of HUMskin, wearing experiences on the human body can be realistically simulated in the laboratory and the effects of different kinds of friction (e.g. static and dynamic friction) on the skin can be accurately measured. In the Touché project, this so-called tribological data, in combination with 3D data at microscopic level, is delivering a detailed understanding of materials and the values that can be expected for friction processes, and how textiles are perceived on the skin.

At the same time, also as part of the project, the Hohenstein Institute's electromechanical textile applicator SOFIA has been further refined (SOFIA = Standardised Operating FabrIc Applicator). SOFIA 2 is now able to apply textile samples to different parts of volunteers' bodies at different speeds and pressures, and SOFIA 2 can also simultaneously measure the friction coefficients during the application.

SOFIA enables textile samples to be applied to volunteers in an entirely standardised way. In order to evaluate the volunteers' perceptions of the textiles objectively, the electrical activity that occurs spontaneously and subconsciously in their brains while the textile samples are being applied is measured using electroencephalography (EEG). Preliminary neurophysiological tests using 64-channel EEG have already shown that the human brain is capable of detecting textiles which have pleasant or unpleasant surface properties.

Contact:
Sandra Reich
Hygiene, environment and medicine
Tel.: +49 7143 271 771
Fax: +49 7143 271 94 771
Email: S.Reich@hohenstein.de
Website: www.hohenstein.de

Marianna Diener | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Primates in peril
15.06.2018 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Flying spider - Thekla's Wondrous Journey
15.06.2018 | Technische Universität Berlin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>