Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do we perceive textiles?

16.11.2015

"Touché" – a European research consortium is examining how we perceive textile materials on our skin.

Earlier this year, the European research project "Touché" was set up, with the title "Boosting innovation through application of a basic understanding of the process and testing of textile touch and fabric feel".


To study human-textile interaction, the Hohenstein Institute has developed a synthetic skin called HUMskin.

©Hohenstein Institute


With the help of the electromechanical textile applicator SOFIA 2, textiles can be applied to the skin in different parts of the body in a standardised way, with varying pressure and speeds.

©Hohenstein Institute

The joint German-Belgian project, part of the CORNET (Collective Research Networking) undertaking by the "Otto von Guericke" e.V. Federation of Industrial Research Associations (AiF, No. 137 EN), is addressing as yet unresolved issues relating to the interaction between human skin and textiles, and how textiles are perceived.

The German research team at the Hohenstein Institute is focusing specifically on the interactions and perception of textiles on the surface of the human body, that is to say, while wearing clothing. This is described as the "fabric feel".

At the same time, the project partners from the University and University College Ghent are investigating whether the way that textiles feel when you actively touch them (the so-called "hand of touch” or "textile touch") can be scientifically measured.

By taking this broadly-based approach, the researchers will be able to study the ways in which the haptic stimuli that we experience when taking hold of a textile differ from the tactile stimuli experienced during the passive wearing of clothing.

In the process, they want to identify those textile parameters which affect human perception. This is important in order to be able to make technical predictions along the textile production chain, and so understand how the textiles will be experienced by the user.

For the purposes of their research into the interactions between textiles and humans, the scientists at Hohenstein have developed their own synthetic skin called "HUMskin" in their Life Sciences department. This has many of the same physiological properties as human skin and the same surface profile as the outermost layer of our skin.

With the help of HUMskin, wearing experiences on the human body can be realistically simulated in the laboratory and the effects of different kinds of friction (e.g. static and dynamic friction) on the skin can be accurately measured. In the Touché project, this so-called tribological data, in combination with 3D data at microscopic level, is delivering a detailed understanding of materials and the values that can be expected for friction processes, and how textiles are perceived on the skin.

At the same time, also as part of the project, the Hohenstein Institute's electromechanical textile applicator SOFIA has been further refined (SOFIA = Standardised Operating FabrIc Applicator). SOFIA 2 is now able to apply textile samples to different parts of volunteers' bodies at different speeds and pressures, and SOFIA 2 can also simultaneously measure the friction coefficients during the application.

SOFIA enables textile samples to be applied to volunteers in an entirely standardised way. In order to evaluate the volunteers' perceptions of the textiles objectively, the electrical activity that occurs spontaneously and subconsciously in their brains while the textile samples are being applied is measured using electroencephalography (EEG). Preliminary neurophysiological tests using 64-channel EEG have already shown that the human brain is capable of detecting textiles which have pleasant or unpleasant surface properties.

Contact:
Sandra Reich
Hygiene, environment and medicine
Tel.: +49 7143 271 771
Fax: +49 7143 271 94 771
Email: S.Reich@hohenstein.de
Website: www.hohenstein.de

Marianna Diener | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>