Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do fishes perceive their environment?

03.05.2017

Fishes perceive changes in water currents caused by prey, conspecifics and predators using their lateral line. The tiny sensors of this organ also allow them to navigate reliably. However, with increasing current velocities, the background signal also increases. Scientists at the University of Bonn have now created a realistic, three-dimensional model of a fish for the first time and have simulated the precise current conditions. The virtual calculations show that particular anatomical adaptations minimize background noise. The results are now being presented in The Journal of the Royal Society Interface.

The ide (Leuciscus idus) is a fish that inhabits the lower stretches of slow-flowing rivers. Like most fishes, it can perceive the current using its lateral line. The mechanoreceptors of this organ are distributed over the surface of the entire body, which is why the organ provides a three-dimensional image of the hydrodynamic conditions.


In this image generated using micro-computed tomography, the blue dyed lateral lines of the ide (Leuciscus idus) are clear to see.

Source: Dr. Hendrik Herzog


Dr. Hendrik Herzog (left) and Dr. Alexander Ziegler from University of Bonn.

Photo: Dr. Andreas Kroh

Fishes can thus also find their way around themselves in the dark and identify prey, conspecifics, or predators. The recently retired zoologist Prof. Horst Bleckmann from the University of Bonn has spent many years researching the sensitive organ and has used it as inspiration for technical flow sensors in order to, for instance, identify leakages in water pipes.

First realistic three-dimensional computer model

The scientists Dr. Hendrik Herzog from the Institute of Zoology and Dr. Alexander Ziegler from the Institute of Evolutionary Biology and Ecology at the University of Bonn have now entered a new dimension of research into the lateral line in fish: they created the first realistic, three-dimensional computer model of the lateral line system, which they used to calculate the precise flow conditions of the surrounding water.

“We concentrated on the head of the ide, because the lateral line of the fish has a particularly complex form there,” reports Dr. Herzog.

This organ has two different types of sensors. Some protrude like small bumps from the surface of the fish’s skin and the water flows directly over them. Others sit in canals that are submerged into the cranial bone and are connected to the water via small pores. “If prey, such as a freshwater shrimp, is close by, the local water current and pressure conditions change,” explains Dr. Ziegler. The fish registers this with its many sensors. “However, until now, the actual function of such different types of current measurement had not been clarified conclusively.”

Both researchers received active support from Birgit Klein from the Westphalian University of Applied Sciences. In her bachelor thesis at the Institute of Zoology, the current master student compared various methods of 3D reconstruction. She took around 350 photos of the head of the ide from various angles and used them to produce a 3D model of the fish surface. She had dyed the channels and sensors of the lateral line beforehand, which is why the structures in the model can be clearly identified. She then optimized the dataset by digitizing the fish head using a much higher-resolution laser scanning procedure.

This created a realistic image of the fish surface, but the inside of the animal was not recorded in this way. This is why the researchers used a micro-computed tomography scanner as the third method. A contrast agent allowed the soft tissue to be shown even when using this X-ray technique. At the end, data from all three techniques flowed into the realistic model of the lateral line. The zoologists thus simulated various current conditions and calculated the hydrodynamic signals to the various sensors.

A strong current is a challenge for the fish, as the background noise for the sensors is particularly great. Nevertheless, the fish can precisely perceive its environment even with high water speeds. As the researchers show with their calculations, depressions ensure that the current is significantly reduced for the bump-like sensors that sit on the surface of the skin. “The relative signal strength of, for instance, prey organisms thus becomes greater,” explains Dr. Herzog. For the sensors in the channels, it was shown that certain sections of the lateral line are particularly sensitive to the respective current strength due to different channel diameters.

Bio-inspired application: improved navigation of underwater robots

“Using our methodical approach, comparative anatomical studies between different fish species with an especially high level of detail will be possible in the future,” reports Dr. Ziegler. His colleague sees bio-inspired applications in the foreground: "The knowledge from such 3D models of fish may also make it possible to significantly improve the autonomous navigation of underwater robots using flow sensors,” suggests Dr. Herzog.

Publication: Form and function of the teleost lateral line revealed using three-dimensional imaging and computational fluid dynamics, The Journal of the Royal Society Interface

Media contact:

Dr. Hendrik Herzog
Institute of Zoology
University of Bonn
Tel. +49 (0)228/735490
E-mail: hendrik.herzog@uni-bonn.de

Dr. Alexander Ziegler
Institute of Evolutionary Biology and Ecology
University of Bonn
Tel. +49 (0)228/735758
E-mail: aziegler@evolution.uni-bonn.de

Weitere Informationen:

http://dx.doi.org/10.1098/rsif.2016.0898 Publication

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

More genes are active in high-performance maize

19.01.2018 | Life Sciences

How plants see light

19.01.2018 | Life Sciences

Artificial agent designs quantum experiments

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>