Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How did the chicken cross the sea?


It may sound like the makings of a joke, but answering the question of how chickens crossed the sea may soon provide more than just a punch line.

Michigan State University is solving the mysterious ancestry of the feral chicken population that has overrun the Hawaiian Island of Kauai.

Photo by Dominic Wright

Michigan State University researcher Eben Gering has collaborated with a team in a study of the mysterious ancestry of the feral chicken population that has overrun the Hawaiian Island of Kauai. Their results, published in the current issue of Molecular Ecology, may aid efforts to curtail the damage of invasive species in the future, and help improve the biosecurity of domestic chicken breeds.

Domesticated chickens, humanity's leading source of animal protein, are fighting rapidly evolving pathogens and fertility issues likely caused by inbreeding. The Red Junglefowl, the chicken's closest living relative, is believed to have been introduced to Hawaii by ancient Polynesians, and is threatened by habitat loss and the contamination of gene pools from hybridization in its native Asian range.

In Kauai, a feral hybrid of the Red Junglefowl and the domesticated chicken has presented the researchers with an opportunity to study the potential practical application of invasive genetics.

"It is crucial that we identify and conserve the genetic variation that still remains in the Red Junglefowl. This variation could soon be essential for the improvement or evolutionary rescue of commercial chicken breeds," said Gering, a postdoctoral research associate in the Department of Zoology.

Through investigating the murky genetic origins of the chickens, the team sought to gain insights into the ongoing evolution of the population.

"We are eager to learn which combinations of genes and traits are emerging from this 'evolutionary experiment,' and to see whether our findings can translate to gains in the sustainability or efficacy of egg and poultry production," Gering said.

Gering and his team found that some chickens were a perfect match for genetic data from ancient Kauai cave bones that predate Captain Cook's 1778 discovery of Hawaii. Others, however, had genotypes that are found in chicken breeds developed recently in Europe and farmed worldwide.

The team also found evidence for a population increase in the chickens in Kauai that coincided with storms that locals believe released chickens and caused feralization over the last few decades. Taken together, the data suggest that the population may have hybrid origins, resulting from interbreeding between the ancient Red Junglefowl and their domestic counterparts.

Additional clues were found in the appearance and behavior of the chickens, which display physical traits and coloration ranging from those of ancient jungle birds to more recent domesticated breeds. Acoustic properties of rooster crows likewise ranged from those typical of the Red Junglefowl to the familiar sound heard on a domestic farm.

But why do these variations matter?

Studying the evolutionary forces at play among the feral chicken population may lead to the ability to create hardier breeds of domestic chickens.

"Darwin drew heavily from his studies of domesticated species to develop his theory of evolution," Gering said. "This can provide important insights into evolution in action within human altered landscapes, and may even someday help build a better chicken. And that would be something to crow about."

Mark Kuykendall | EurekAlert!

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>