Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How did animals inhabit in the sand?

24.07.2015

By using annelid worms as an example a team of researchers led by PD Dr. Torsten H. Struck, scientist at the Zoological Research Museum Alexander Koenig – Leibniz-Institute for Animal Biodiversity (ZFMK) in Bonn, proves that the fauna of the interstitial system has two evolutionary paths. Now in the well-known journal Current Biology published data show, that the findings refute the currently favored hypothesis that animals in the sand evolved almost by progenetic evolution (bringing forward the onset of sexual maturity by evolutionary mechanisms).

The new results show, that miniaturization (reduction of the body size of adult individuals in the course of time) was as well one of the driving forces of evolution in this case. The researchers clarified the processes by using modern biomolecular and genetic techniques, which involved the analysis of 679 genes.


Ringed worm of the genus Protodrilus normally living in the interstitial system

Copyright: Dr. T. Struck

Till the beginning of the 20th century it was assumed that no animals lived in beaches or other marine sediments. The zoologist Remane from Kiel showed, that there is a rich community of so-called interstitial species in the space between the sand grains. These species are correspondingly simple build and small with maximal few millimeters of length. Such animals are found in nearly all groups of invertebrates, but their origin is often unknown.

For many it has been assumed, that they exhibit the ancestral organization for these invertebrates. Alternatively, it is assumed, that they are derived from larger animals. Thereby, progenetic evolution is favored. In this scenario larval and juvenile stages of larger ancestors, which temporarily inhabit the sand, become sexually mature and arrest their further development of the body. Thus, a permanent inhabitation of the sand is achieved. A third, often-neglected alternative is the evolution by stepwise reduction and simplification of adult stages of larger ancestors, known as miniaturization.

Lead by researchers from the Zoological Research Museum Alexander Koenig the evolution of such interstitial species was investigated using ringed worms as an example. Ringed worms or Annelida are a very diverse group of animals with more than 15000 species.

„Ringed worms are one of the dominant benthic animal groups in the marine environment and especially in the deep sea. However, they can also be found in your own garden or at a practitioner as earthworms or leeches are also annelids«, explains PD Dr. Torsten H. Struck.

In this new study, which has been published this week in the well renowned scientific journal Current Biology, Struck and co-authors investigated the relationships of such interstitial species within Annelida with the aid of transcriptomic libraries. In such libraries mRNAs of cells are determined. mRNA is a intermediate product in the translation of gen information to a protein. Based on 679 genes they were able to reconstruct the relationships and evolution of interstitial species.

»Our study shows, that the interstitial species originated not only by progenetic evolution as has been assumed in the last decades« explained Struck. Rather miniaturization of larger ancestors plays an important part in the permanent inhabitation of the interstitial realm. Miniaturization is often not considered in other animal groups as well as longer times in evolution are assumed. These results show, that besides an ancestral inhabitation of the interstitial realm and progenetic evolution miniaturization should be taken into account more often also in other animal groups.

Source: Torsten H. Struck, Anja Golombek, Anne Weigert, Franziska A. Franke, Wilfried Westheide, Günter Purschke, Christoph Bleidorn, Kenneth M. Halanych: The evolution of annelids reveals two adaptive routes to the interstitial realm. Current Biology

Url: http://dx.doi.org/10.1016/j.cub.2015.06.007

Contact:

PD Dr. Torsten Struck
Stipendiat des Heisenberg-Programms (DFG)
Tel: +49 228 9122-401
Fax: +49 228 9122-212
Mail: torsten.struck.zfmk@uni-bonn.de


Zoological Research Museum Alexander Koenig – Leibniz-Institute for Animal Biodiversity (ZFMK) is an independent research institute. The focus of research is on performing an inventory of the zoological species diversity on earth, on the analysis of changes in biodiversity as a result of environmental factors, and on evolutionary processes at the morphological and molecular levels. ZFMK furthermore explores the context of structure and function of ecological systems, advanced scientific methods, and the study of the history of science. The permanent exhibition “Our blue planet – the living network” offers a genuine nature experience based on naturalistic ecosystem displays.

The Leibniz Association is a network of 89 scientifically, legally, and economically independent research institutes and scientific service facilities. Leibniz Institutes perform strategic and thematically-oriented research and offer scientific service of national significance while striving to find scientific solutions for major social challenges.

Weitere Informationen:

http://dx.doi.org/10.1016/j.cub.2015.06.007

Sabine Heine | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>