Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How did animals inhabit in the sand?

24.07.2015

By using annelid worms as an example a team of researchers led by PD Dr. Torsten H. Struck, scientist at the Zoological Research Museum Alexander Koenig – Leibniz-Institute for Animal Biodiversity (ZFMK) in Bonn, proves that the fauna of the interstitial system has two evolutionary paths. Now in the well-known journal Current Biology published data show, that the findings refute the currently favored hypothesis that animals in the sand evolved almost by progenetic evolution (bringing forward the onset of sexual maturity by evolutionary mechanisms).

The new results show, that miniaturization (reduction of the body size of adult individuals in the course of time) was as well one of the driving forces of evolution in this case. The researchers clarified the processes by using modern biomolecular and genetic techniques, which involved the analysis of 679 genes.


Ringed worm of the genus Protodrilus normally living in the interstitial system

Copyright: Dr. T. Struck

Till the beginning of the 20th century it was assumed that no animals lived in beaches or other marine sediments. The zoologist Remane from Kiel showed, that there is a rich community of so-called interstitial species in the space between the sand grains. These species are correspondingly simple build and small with maximal few millimeters of length. Such animals are found in nearly all groups of invertebrates, but their origin is often unknown.

For many it has been assumed, that they exhibit the ancestral organization for these invertebrates. Alternatively, it is assumed, that they are derived from larger animals. Thereby, progenetic evolution is favored. In this scenario larval and juvenile stages of larger ancestors, which temporarily inhabit the sand, become sexually mature and arrest their further development of the body. Thus, a permanent inhabitation of the sand is achieved. A third, often-neglected alternative is the evolution by stepwise reduction and simplification of adult stages of larger ancestors, known as miniaturization.

Lead by researchers from the Zoological Research Museum Alexander Koenig the evolution of such interstitial species was investigated using ringed worms as an example. Ringed worms or Annelida are a very diverse group of animals with more than 15000 species.

„Ringed worms are one of the dominant benthic animal groups in the marine environment and especially in the deep sea. However, they can also be found in your own garden or at a practitioner as earthworms or leeches are also annelids«, explains PD Dr. Torsten H. Struck.

In this new study, which has been published this week in the well renowned scientific journal Current Biology, Struck and co-authors investigated the relationships of such interstitial species within Annelida with the aid of transcriptomic libraries. In such libraries mRNAs of cells are determined. mRNA is a intermediate product in the translation of gen information to a protein. Based on 679 genes they were able to reconstruct the relationships and evolution of interstitial species.

»Our study shows, that the interstitial species originated not only by progenetic evolution as has been assumed in the last decades« explained Struck. Rather miniaturization of larger ancestors plays an important part in the permanent inhabitation of the interstitial realm. Miniaturization is often not considered in other animal groups as well as longer times in evolution are assumed. These results show, that besides an ancestral inhabitation of the interstitial realm and progenetic evolution miniaturization should be taken into account more often also in other animal groups.

Source: Torsten H. Struck, Anja Golombek, Anne Weigert, Franziska A. Franke, Wilfried Westheide, Günter Purschke, Christoph Bleidorn, Kenneth M. Halanych: The evolution of annelids reveals two adaptive routes to the interstitial realm. Current Biology

Url: http://dx.doi.org/10.1016/j.cub.2015.06.007

Contact:

PD Dr. Torsten Struck
Stipendiat des Heisenberg-Programms (DFG)
Tel: +49 228 9122-401
Fax: +49 228 9122-212
Mail: torsten.struck.zfmk@uni-bonn.de


Zoological Research Museum Alexander Koenig – Leibniz-Institute for Animal Biodiversity (ZFMK) is an independent research institute. The focus of research is on performing an inventory of the zoological species diversity on earth, on the analysis of changes in biodiversity as a result of environmental factors, and on evolutionary processes at the morphological and molecular levels. ZFMK furthermore explores the context of structure and function of ecological systems, advanced scientific methods, and the study of the history of science. The permanent exhibition “Our blue planet – the living network” offers a genuine nature experience based on naturalistic ecosystem displays.

The Leibniz Association is a network of 89 scientifically, legally, and economically independent research institutes and scientific service facilities. Leibniz Institutes perform strategic and thematically-oriented research and offer scientific service of national significance while striving to find scientific solutions for major social challenges.

Weitere Informationen:

http://dx.doi.org/10.1016/j.cub.2015.06.007

Sabine Heine | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>