Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a Wound Closes

24.02.2015

Heidelberg researchers decode molecular mechanism of collective cell migration important for wound healing

For wounds to close, cells need to move collectively in one direction in a coordinated fashion. Until now the central molecular mechanism that allows cells to coordinate these movements over larger distances has been unclear. Now researchers from Heidelberg University and the Max Planck Institute for Intelligent Systems in Stuttgart have succeeded in decoding it. Collective cell migration is not only important in wound healing, but also in the development of the embryo and even of cancer. The results of their research, published in the journal “Nature Cell Biology”, have tremendous implications for all three of these areas.


Epithelial cells move collectively out of their original shape (left) into the environment (right). Localisation of Merlin is shown in green, the cell nuclei in red.

Picture: Max Planck Institute for Intelligent Systems

“The collective migration of cells and biological systems is one of the most important natural phenomena and occurs in nature at different levels and length scales. We have now identified the key molecular player and the related mechanism that controls the collective migration of epithelial cells, that is the covering layer of skin cells,” explains Prof. Dr. Joachim Spatz of the Institute for Physical Chemistry at Heidelberg University and the Max Planck Institute for Intelligent Systems. In their investigation, the researchers introduce a complete molecular mechanism that focuses on the protein called Merlin. The results link intercellular mechanical forces to collective cell movements and also demonstrate how local interactions give rise to collective dynamics at the multicellular level. “They create an analogy with what we already know about collective movements observable in both the biological and physical world,” explains Prof. Spatz.

The researcher compares the process of cell migration to running a marathon. “At the level of the organism, an individual in a collective consciously tries to align its movements with those of its neighbours, which involves orchestrated sensing and action.” Within a cellular collective, these two processes are linked via signal transduction pathways. There is a lead cell in the collective, similar to the leader in a marathon. It is mechanically connected to its follower cells by cell-to-cell contacts. The forward motion of the lead cell puts mechanical tension on the follower cells, according to Spatz. The merlin protein senses this mechanical tension and initiates spatially polarised following movement. This transmits the mechanical tension among the follower cells from one cell to the next. The follower cells respond by forming ‘leg-like’ protrusions directed at the lead cell in order to move forward.

“Until now it has been unclear what molecular link connects these two events, sensing and action,” says Joachim Spatz. “Our study now shows how the mechanosensitive Merlin protein converts cellular forces to collective cell motions by acting as a mechanochemical transducer. What’s truly astonishing is that Merlin is the only protein in the responsible signal network that conveys this property to cellular collectives – that there are no replacement mechanisms. If Merlin fails, the cells lose their ability to move collectively and trigger the related medically relevant, pathophysiological properties in the organism”.
The major player in the study, Merlin, is also a known tumour suppressor that is responsible for several types of cancer. Merlin is also a regulator of the Hippo pathway, an important signal pathway in biology that controls cell proliferation and organ size. It has been preserved in evolution since the emergence of primitive multicellular organisms. “It’s exciting to see a connection between these seemingly disparate fields, linked by a Merlin-mediated signalling mechanism,” says the researcher.

Researchers from the Hamamatsu Tissue Imaging and Analysis (TIGA) Center at the BioQuant Centre of Ruperto Carola and the National Center for Tumor Diseases (NCT) Heidelberg also participated in the study.

Original publication:
T. Das, K. Safferling, S. Rausch, N. Grabe, H. Boehm, J. Spatz: A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nature Cell Biology (published online 23 February 2015), doi: 10.1038/ncb3115

Contact:
Prof. Dr. Joachim Spatz
Institute of Physical Chemistry
Phone: +49 6221 54-4942
joachim.spatz@urz.uni-heidelberg.de

Communications and Marketing
Press Office
Phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>