Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a fungus inhibits the immune system of plants

27.10.2016

A newly discovered protein from a fungus is able to suppress the innate immune system of plants. This has been reported by research teams from Cologne and Würzburg in the journal "Nature Communications".

The fungus Piriformospora indica colonizes the roots of different plants. This can be orchids, tobacco, barley or even moss. It penetrates into the roots, but does not damage the plants. On the contrary, it can even promote the growth of its plant partners. Such and other interactions between the fungus and its partners are already known to the scientific community.


The pictures show a plant root, which is populated by the fungus Piriformospora indica. The green colour reveals where the protein FBG1 is located.

Pictures: Stephan Wawra

Research groups from Cologne and Würzburg are now reporting a new facet of the fungus-plant relationship in "Nature Communications": The researchers identified a protein with which the fungus suppresses the immune defence of the populated plants. So it makes sure that it is not attacked like disease-inducing fungi and the relationship can succeed in the long run.

The protein "Fungal Glucan Binding 1" (FGB1) causes, inter alia, the plant not to produce an "oxidative burst". This usually generates aggressive oxygen radicals, which destroy potential pathogens and activate the immune system of the plant.

Protein makes the plant blind to fungus structures

How does the protein lame the immune response of the plant? "It binds highly affine and very specific to sugar molecules that sit in the cell wall of the fungi and which are normally recognized as 'foreign' by the plant," explains Professor of Molecular Biology Alga Zuccaro from the University of Cologne. FGB1 acts like a camouflage coat and conceals the foreign sugar molecules from the immune system.

The relevant sugar molecules are beta-1,3 / 1,6-glucans, according to Jürgen Seibel, a professor of Organic Chemistry at the Julius-Maximilians-Universität (JMU) Würzburg. The fact that fungal glucans have a positive effect on human immune systems has been known for a long time. It is less known that they can also stimulate the immune system of plants.

The fact that the immune defence is suppressed by FGB1 in the case of Piriformospora indica, Zuccaro and Seibel can now demonstrate by combining the know-how of their working groups. The Cologne molecular biologist is an expert on root-colonizing fungi and the plant immune system, the Würzburg chemist is a specialist for sugar molecules and their functions in cells and organisms.

Perspective for medical diagnostics

The new findings may be useful in medicine and plant breeding. Given that the newly discovered protein FGB1 has such a high affinity and specificity to beta-1,6-glucans from fungi cell walls, it is possibly suitable for the diagnosis of human infections. In addition, the new knowledge could contribute to the cultivation of plants with increased disease resistance in the long term.

The next step is to examine how the plants recognize the beta-1,3 / 1,6-glucans and how exactly FGB1 suppresses them.

The fungal-specific ß-glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants. Stephan Wawra, Philipp Fesel, Heidi Widmer, Malte Timm, Jürgen Seibel, Lisa Leson, Leona Kesseler, Robin Nostadt, Magdalena Hilbert, Gregor Langen & Alga Zuccaro, Nature Communications,DOI:10.1038/ncomms13188

Contact

Prof. Dr. Alga Zuccaro, University of Cologne, T +49 221 470-7170, azuccaro@uni-koeln.de

Prof. Dr. Jürgen Seibel, University of Würzburg, T +49 931 31-85326, seibel@chemie.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>