Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a Developmental Gene Controls Feeding Behaviour

15.01.2016

Heidelberg biologists gain new insights into a Hox gene using the fruit fly model organism

In experiments on the fruit fly model organism Drosophila melanogaster, Heidelberg University biologists gained new insight into how feeding behaviour is encoded and controlled. The research team led by Prof. Dr. Ingrid Lohmann of the Centre for Organismal Studies (COS) studied the function of a special developmental gene of the Hox gene family. This gene is essential for maintaining a motor unit in the fly’s head that consists of a muscle and the stimulating neurons that enable the fly to feed. If the function of the Hox gene was damaged or defective, the unit was not or only partially developed and the animals starved. The results of the research were published in the journal “Cell Reports”.


Photo: COS

Image of a head motor unit enabling feeding behavior in flies. Function of the Hox Protein Deformed is essential for the development and maintenance of this motor unit that comprises a muscle (red) and its innervating neurons (green), as well as interconnecting synapses (blue).

“Animals interact with their environment based on stereotypical movement patterns, such as those performed during running, breathing or feeding,” explains Prof. Lohmann, who directs the Developmental Biology research group at the Centre for Organismal Studies. “We have known for some time that a family of regulatory genes known as Hox genes is essential for establishing coordinated movement patterns. But until now we did not understand the molecular underpinnings of feeding behaviour.” Using Drosophila melanogaster, Prof. Lohmann’s team was able to demonstrate that a specific Hox gene, known as Deformed, controls the establishment of the feeding motor unit not only during the development of the embryo. It is also responsible for maintaining its function in later phases of life, which was revealed when the researchers deactivated Deformed after embryogenesis when the motor unit was successfully formed. Yet the typical movement patterns were lost anyway. The team was able to attribute the loss to major changes at the junctions, or synapses, between the neuron and the muscle.

“Our studies show that Hox genes have a protective function in neurons. As soon as this protection is gone, the neurons degenerate, like we observe in neurodegenerative diseases such as Alzheimer’s and Parkinson’s,” explains Prof. Lohmann. Future studies will be devoted to elucidate how Hox genes perform this protective function at the molecular level. The research project was funded by the German Research Foundation.

Original publication:
J. Friedrich, S. Sorge, F. Bujupi, M.P. Eichenlaub, N.G. Schulz, J. Wittbrodt and I. Lohmann: Hox Function is required for the Development and Maintenance of the Drosophila Feeding Motor Unit. Cell Reports (published online 14 January 2016), doi:10.1016/j.celrep.2015.12.077

Contact:
Prof. Dr. Ingrid Lohmann
Centre for Organismal Studies (COS)
Phone +49 6221 54-5523
ingrid.lohmann@cos.uni-heidelberg.de

Communications and Marketing
Press Office
Phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.cos.uni-heidelberg.de/index.php/independent/i.lohmann?l=e

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

Further reports about: Drosophila Drosophila melanogaster Hox Hox gene

More articles from Life Sciences:

nachricht The “Holy Grail” of peptide chemistry: Making peptide active agents available orally
21.02.2018 | Technische Universität München

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>