Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a Bacterial Virus Found in Jerusalem Sewage Could Prevent Root Canal Infections

18.02.2015

Scientists turn the tables on drug-resistant bacteria by infecting them with bacteriophages (bacterial viruses)

Every year, drug-resistant infections kill more than 50,000 people across Europe and the United States, and hundreds of thousands more around the world. According to the Review on Antimicrobial Resistance commissioned by the UK Prime Minister, failing to address the growing problem of drug-resistant infections could cause 10 million deaths a year and cost up to $100 trillion USD by 2050. (See Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations, at http://amr-review.org )


Bacteriophage EFDG1 visualized by transmission electron microscopy (TEM) at a magnification of 20,000 – 30,000 times. Note that some phages are still bound to remains of the dead bacteria. (Photo: Ronen Hazan / Hebrew University)

Now, researchers from the Hebrew University of Jerusalem’s Faculty of Dental Medicine propose a way to turn the tables on harmful bacteria that infect humans, by infecting them with tiny viruses called bacteriophages. In a strange twist, one such virus, cultivated from Jerusalem sewage, may help prevent infections following dental procedures.

Just a few decades ago, antibiotics were considered wonder drugs. Ironically, because they worked so well, they were used too often, leading to the rise of drug-resistant bacteria. These untreatable pathogens evolved mutations enabling them to resist the antibiotics that doctors prescribe to fight them.

One such pathogen is Enterococcus faecalis, a bacterium inhabiting the gastrointestinal tracts of humans. This life-threatening pathogen causes diseases ranging from endocarditis (a potentially fatal heart infection) to bacteremia (harmful bacteria in the bloodstream), as well urinary tract infection, meningitis, and post-treatment root canal infections.

E. faecalis is a highly durable strain, and is especially hard to target when grouped in a sticky bacterial cluster called biofilm. E. faecalis is often recovered from persistent infections associated with root canal treatments, and infection may persist in 20-33% of root canals.

The frustrating rate of infections reflects the limitations of current treatment options. Thus it is essential to develop additional ways to target highly virulent bacteria such as E. faecalis, especially when in biofilm form.

A promising alternative approach to traditional antibiotics is bacteriophage therapy. Bacteriophages, or “phages,” are viruses that infect bacteria. Phages play a key role in maintaining the natural balance in their predator-prey relationship with bacteria. They co-evolved with their bacterial hosts to be highly effective specific “professional bacterial killers.”

Now, a research team - led by Dr. Ronen Hazan from the Institute of Dental Sciences at the Hebrew University, and Dr. Nurit Beyth from the Hebrew University-Hadassah School Of Dental Medicine, together with their co-workers and students, Dr. Shunit Glaser, Leron Khalifa, Daniel Gelman and Yair Brosh - has identified a way to use phage therapy to target E. faecalis biofilms.

The researchers isolated an anti-E. faecalis phage from sewage effluents retrieved from a Jerusalem sewage treatment facility. The phage, named EFDG1, is capable of infecting the V583 strain of E. faecalis, which is resistant to vancomycin, the most effective anti-E. faecalis antibiotic.

The team evaluated EFDG1’s efficacy against E. faecalis cells both in a liquid culture and in biofilm form. Since there are currently no effective ways to eradicate E. faecalis biofilms, the researchers’ goal was to target E. faecalis in its most robust form, as a biofilm.

In both cases EFDG1 almost entirely eradicated the bacterial cultures. EFDG1 was found to be highly efficient against various E. faecalis and E. faecium isolates, regardless of their antibiotic resistance profile.

Moreover, the researchers showed that EFDG1 was highly effective in root canal infection, both in vitro and ex vivo in tissue samples. These findings suggest that phage therapy using EFDG1 might be an effective way to prevent E. faecalis infection following root canal procedures.

To see whether the EFDG1 is safe to use in fighting E. faecalis infections in humans, the researchers examined EFDG1 phages for the presence of hazardous genes. By visualizing the phage using electron microscopy, followed by whole genome sequencing, the researchers found that it belongs to the Spounavirinae subfamily of the Myoviridae phages, which include other promising candidates for therapy against Gram positive pathogens. Moreover, they found that the EFDG1 genome does not contain apparent harmful genes.

According to Dr. Ronen Hazan, “The idea of using phages as anti-bacterial drugs is not new. Phage therapy was first proposed at the start of the 20th century, but then abandoned for various reasons, including the striking success of chemical antibiotics. Now we stand on the verge of a new era with the limitations of synthetic antibiotics and the emergence of antibiotic-resistant strains of bacteria. Thus it is the right time to look again into what Mother Nature offers in the battle against bacteria. As this research shows, bacteriophages may prove an effective tool in the development of much-needed new antimicrobial drugs.”

The research will appear in the April 2015 edition of Applied and Environmental Microbiology Journal as “Targeting Enterococcus faecalis biofilm using phage therapy.” Currently online as an Early Edition (doi:10.1128/AEM.00096-15).

The research was supported by a Hebrew University / Yissum startup grant.

For information or interviews, contact:

Dov Smith
Hebrew University Foreign Press Liaison
+972-2-5882844 / +972-54-8820860
dovs@savion.huji.ac.il

Dov Smith | Hebrew University
Further information:
http://www.huji.ac.il

Further reports about: Dental Virus antibiotics bacteria bacterial drug-resistant faecalis infections phage

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>