Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot on the trail of the Asian tiger mosquito

28.10.2014

Scientists use the new discipline of landscape genetics to follow a ‘flying syringe’

The Asian tiger mosquito (Aedes albopictus), which is native to Southeast Asia, was spotted in Houston in 1985. By 1986 it had reached St. Louis and Jacksonville, Fla. Today it can be found in all of the southern states and as far north as Maine.


CDC

Aedes albopictus, the Asian tiger mosquito, is an aggressive daytime biter and a potential disease vector. Lab studies have shown that two dozen viruses can reproduce in the mosquito, but so far it is suspected of spreading only the chickunguna virus in the U.S.

An aggressive daytime biter, Ae. albopictus has an affinity for humans and is also a vector for human disease, said Kim Medley, PhD, interim director of the Tyson Research Center at Washington University in St. Louis.

The mosquito arrived in the U.S. in a shipment of used tires from Japan. Ae. albopictus lays eggs that can survive even if any water evaporates, so they’re very easy to transport, said Medley. “It’s widely accepted that global trade and travel have led to many species introductions,” she said.

“But how introduced species spread and adapt to novel conditions after introduction is less well understood,” she said.

To reconstruct what happened, Medley and her colleagues at the University of Central Florida turned to the new discipline of landscape genetics. Correlating genetic patterns with landscape patterns, they concluded that the mosquito had traveled by human-aided “jump” dispersal followed by slower regional spread.

The jumps occurred when mosquitoes hitched a ride in cars or trucks, traveling in style up major highways.

Their study, published in the Oct. 27 online edition of Molecular Ecology, is one of only a handful of landscape genetics studies to track an invasive species and the first to detect hitchhiking.

Medley’s concern is not that gardeners will be driven indoors but rather that human-aided dispersal will accelerate the adaptation of the mosquitoes and the viruses they can carry to their new surroundings and to one another.

So far this year the state of Florida has reported 11 cases of locally transmitted chickungunya, a disease original to Africa that wasn’t seen in the Americas until 2013.

“The movement of invasive species by human-aided transport can have far reaching consequences,” Medley said.

A deft piece of deduction

Looking at a map of the current range of Ae. albopictus in the U.S., it is impossible to know how the mosquito spread from its point of introduction, although it could hardly have been by wing power alone, since an adult flies less than a kilometer in its lifetime. 

“Even Darwin, in the 1800s, was interested in how species travel from point A to point B,” said Medley. “But measuring dispersal rates by hand is nearly impossible,” she said. “I’ve tried it. You can dust mosquitoes and release them and then try to recapture them, but capturing enough of the releases to reach any solid conclusion is really difficult.”

So to figure out how Ae. albopictus spread from the tire pile in Houston, the scientists used a technique that relies on high-tech tools such as genotyping and GIS. First introduced by French scientists in 2003, landscape genetics provides a way to rigorously test competing hypotheses for dispersal.

As a first step they had to establish the genetic structure of the U.S. Ae. albopictus population. A container mosquito, Ae. albopictus lays its eggs just above the waterline in old tires, flower pot saucers, water bowls, bird baths—and cemetery flower vases.

To sample the mosquito population the scientists collected larvae from abandoned flower vases in cemeteries both on the edge and within the core of the mosquitoes’ U.S. range in both rural and urban areas.

“The green cylinders with the spike on the bottom are the best for collecting immature stages of mosquitoes,” Medley said.

The immature mosquitoes were raised to adults in the laboratory so the species could be accurately identified (there are 174 recognized species in the U.S.) and then the DNA was extracted from clipped legs and typed at nine different microsatellite locations.

The scientists then compared the genetic structure of the mosquito population to that predicted by 52 different models of mosquito dispersal that variously took into consideration habitat and highways.

It turned out that gene flow over long distances was correlated with highways and bodies of water. People had carried mosquitoes from the core of their range to its edge along highways, likely by semi-trailers or in cars. Wetlands and lakes were important, not because they are breeding sites, but because they tend to occur in areas where frequent rainfall refills artificial containers and supports mosquito growth.

The scientists also looked more closely at what was happening at the range edge. Because Ae. albopictus lays eggs in treeholes and is often found resting at forest edges, they expected forests at the northern edge of the mosquitoes’ range to act as natural corridors for dispersal.

It turned out forests were barriers rather than corridors, perhaps because Ae. albopictus had not been able to displace the native treehole mosquito, Ae. triseriatus.

The forest finding is an interesting example of the ability of landscape genetics to test assumptions, Medley said.

Why mosquito road trips matter

Understanding mosquito dispersal is important because the mosquito’s genes go where it goes. Human-aided gene flow between mosquito populations can give a species the smorgasbord of genetic options it needs to rapidly adapt to novel conditions, Medley said. 

Ae. albopictus has already spread further north in the U.S. than expected, given its limited cold hardiness in its native range. Under selection pressure at the edge of their range, the mosquitoes might be producing eggs that respond to shortening days and the onset of winter by going into a state of dormancy, Medley said.

Dispersal also upsets the balance between the mosquito, its competitors, hosts and pathogens, raising the possibility that exotic mosquito-borne viruses will be able to take advantage of the newly cosmopolitan vector to move into the U.S.

The history of introduced Ae. albopictus and disease is not encouraging, Medley said, describing what happened when Ae. albopictus reached India and the Indian Ocean. The opportunistic virus that took advantage of the spread in this case was chickungunya.

Chickungunya, a viral infection characterized by spiking fever and severe joint pain, was first described in Africa in 1955, where it was spread by Ae. aegypti, the dominant mosquito there. 

The virus spread out of Africa to islands in the Indian Ocean, reaching the island of  Réunion, in 2005. Ae. aegypti was absent or present in low numbers on Réunion, and Ae. albopictus was the dominant mosquito. The next year there were 265,000 clinical cases of chickungunya in Réunion and 237 deaths (out of a population of 770,000).

Research at the Pasteur Institute in Paris showed strains of the virus circulating in Réunion had a genetic mutation that made it easier for the virus to infect Ae. albopictus. That didn’t prove Ae. albopictus was the vector for the epidemic, but the timing strongly suggested a connection.

Also in that year, the virus was introduced into India from East Africa where it underwent the same mutation as in Réunion. This rare duplicate mutation, called an evolutionary convergence, is usually a sign of strong selection pressure, Medley said.

Conditions in the U.S. are ripe for a similar event. Both Ae. albopictus and Ae. aegypti are container mosquitoes, but Ae. albopictus larvae will out-compete anything in an artificial container except predatory larvae, Medley said. So as Ae. albopictus has dispersed, it has pushed out Ae. aegypti.

It is now the dominant mosquito across Florida, Medley says, where local mosquitoes have begun to vector chickungunya and Ae. albopictus is a likely suspect.


What to do?

Ae. albopictus is now well established in the U.S., so what bearing do the findings have on what we do now? Medley suggests that they should inform mosquito control efforts, particularly at the range edge where the population is fragmented and sub-populations blink in and out naturally and as a result of local eradication.

“If we eliminate a local population but leave dispersal routes open, we’re just going to have re-introductions,” she said.

“But,” she said, “my broader concern is the effect of human-aided dispersal on evolution, both the adaptation of the mosquito to northern climates and its co-evolution with chikungunya. By stopping human-aided dispersal of the mosquitoes, we might be able to prevent the further spread of the mosquitoes and the diseases they vector. “

To shut down the dispersal routes, however, we’d have to take the risk more seriously than we now do.

After all, one of the containers Ae. albopictus favors are those small pots of “lucky bamboo” sold on Amazon and eBay, and at Target, Home Depot, Walmart, Walgreens and many other retail outlets.

Diana Lutz | Eurek Alert!
Further information:
https://news.wustl.edu/news/Pages/27522.aspx

Further reports about: Asian tiger mosquito aegypti albopictus eggs flower genetic structure highways landscape larvae mosquito species

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>