Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Honey bees use multiple genetic pathways to fight infections


Honey bees use different sets of genes, regulated by two distinct mechanisms, to fight off viruses, bacteria and gut parasites, according to researchers at Penn State and the Georgia Institute of Technology.

The findings may help scientists develop honey bee treatments that are tailored to specific types of infections. "Our results indicate that different sets of genes are used in immune responses to viruses versus other pathogens, and these anti-viral genes are regulated by two very distinct processes -- expression and DNA methylation," said David Galbraith, graduate student in entomology, Penn State. The results will appear in todays (Mar. 26) issue of PLOS Pathogens.

These are bees on a hive.

Credit: Bernardo Niño, Penn State

According to Christina Grozinger, director of the Penn State Center for Pollinator Research, beekeepers lose an average of 30 percent of their colonies every winter and an average of 25 percent in the summer.

"Honey bees have more than 20 types of viruses, and several of them have been linked to losses of honey bee colonies," she said. "Yet, beekeepers currently do not have any commercially available methods to reduce viral infections." With a goal of uncovering which genes increase or decrease their activity in response to the presence of viruses, the researchers measured expression levels of all genes in the honey bee genome in both infected and uninfected bees. They found that the RNAi pathway had increased activity and, therefore, is likely an important anti-viral immune pathway in bees.

"Previous studies suggested the RNAi pathway was involved in anti-viral immune responses in bees, but we showed that expression levels of many genes in this pathway are significantly higher in virus-infected bees," said Grozinger. "The RNAi pathway helps to cut up and destroy viral RNA so it is not infectious." Scientists and beekeepers are increasingly interested in using RNAi approaches to control viruses and parasites in agricultural crops and in honey bee colonies, according to Grozinger.

"We will need to make sure that any artificial RNAi approaches do not interfere with the natural anti-viral RNAi mechanisms in honey bees," Grozinger said. In addition to examining gene expression in virus-infected versus uninfected honey bees, the researchers also scanned the honey bee DNA for extra methylation marks that may have been added or removed from genes in virus-infected bees.

The team found that viral infections do change the pattern of DNA methylation in honey bees, and in a completely different set of genes from the ones in the RNAi pathway. Many of these differentially methylated genes are also involved in anti-viral responses in mammals, but they have not previously been linked to anti-viral responses in insects, said Grozinger.

"We found that there was very little overlap between differentially expressed and differentially methylated genes, suggesting dual genomic response pathways to viral infection," said Galbraith. "For the first time, we characterized both the global gene expression and DNA methylation patterns associated with acute viral infection in honey bees. We confirmed that the RNAi pathway, which has been seen in other insects, is also an antiviral defense mechanism in honey bees. And, for the first time, we observed alterations in DNA methylation patterns in response to viral infection in honey bees."


Other authors on the paper include Xingyu Yang, graduate student in bioinformatics and Soojin Yi, associate professor of biology, both at Georgia Institute of Technology, and Elina Lastro Niño, assistant extension apiculturist, University of California, Davis. The U.S. Department of Agriculture and National Science Foundation provided funding for this research.

Media Contact

A'ndrea Elyse Messer


A'ndrea Elyse Messer | EurekAlert!

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>