Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Higher Tumor Rates by Exposure to Electromagnetic Fields

06.03.2015

Electromagnetic fields stimulate the growth of tumors in mice. This is the result of a new study by researchers from Jacobs University in Bremen, Germany, which was commissioned by the Federal Office for Radiation Protection, and published today. The findings do not only confirm a previous pilot study undertaken by the Fraunhofer Institute ITEM in 2010, but expand on the knowledge in two important aspects.

In a study with mice, Alexander Lerchl, Professor of Biology at Jacobs University, and his team could verify that carcinogen-induced tumor rates were significantly higher when the animals were exposed to electromagnetic fields such as those emitted from mobile phones.


Prof. Dr. Alexander Lerchl, Professor of Biology at Jacobs University

Copyright: Jacobs University

“The effects on liver and lung tumors, as reported by ITEM in 2010, were fully confirmed,” says Prof. Lerchl who conducted the investigation together with colleagues from Jacobs University and from the University of Wuppertal. “In addition we found a significantly elevated rate of lymphoma due to exposure,” the scientist explains. Furthermore, some of the effects were seen at levels below the exposure limits for the general population.

Alexander Lerchl, however, does not interpret the new data as being a proof for cancer induction through the use of mobile phones.

“Our results show that electromagnetic fields obviously enhance the growth of tumors. The assumption that they can cause cancer has not been proven so far,” Prof. Lerchl emphasizes, who has published a large number of studies on the topic. Additional research is necessary to clarify the reasons for the latest results findings.

“We can clearly demonstrate the effects. Now new studies must aim at explaining the underlying mechanisms”, Prof. Lerchl concludes.

For questions, please contact:
Prof. Dr. Alexander Lerchl | Professor of Biology
Tel.: +49 421 200 3241 | a.lerchl@jacobs-university.de

Weitere Informationen:

http://www.sciencedirect.com/science/article/pii/S0006291X15003988 - new study by Prof. Dr. Alexander Lerchl from Jacobs University Bremen, Germany

Kristina Logemann | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>