Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-arctic butterflies shrink with rising temperatures

07.10.2015

New research shows that butterflies in Greenland have become smaller in response to increasing temperatures due to climate change

New research shows that butterflies in Greenland have become smaller in response to increasing temperatures due to climate change.


Arctic fritillary (Boloria chariclea) is one of the two species that have become smaller due to climate change. This is demonstrated in a new study by Danish researchers. The scientists have measured the wing length of nearly 4,500 individuals collected annually between 1996 and 2013 from Zackenberg, Greenland and found that the blade length decreased significantly in response to warmer summers.

Photo: Toke T. Hoye

It has often been demonstrated that the ongoing rapid climate change in the Arctic region is causing substantial change to Arctic ecosystems. Now Danish researchers demonstrate that a warmer Greenland could be bad for its butterflies, becoming smaller under warmer summers.

Researchers from Aarhus University have measured wing length of nearly 4,500 individuals collected annually between 1996 and 2013 from Zackenberg Research Station in Northeast Greenland, and found that wing length has decreased significantly in response to warmer summers and at the same rate for both species investigated.

"Our studies show that males and females follow the same pattern and it is similar in two different species, which suggests that climate plays an important role in determining the body size of butterflies in Northeast Greenland," says senior scientist Toke T. Hoye, Aarhus Institute of Advanced Studies, Aarhus University.

Only very few field studies have been able to follow changes in the body size of the same species over a period where the climate has changed and this is the longest known time series on body size variation in butterflies, of which we are aware.

The larvae change metabolism

Body size change in response to rising temperature is an anticipated response to climate change, but few studies have actually demonstrated it in the field.

The response can go both ways; for some animal species, a longer feeding season results in increased body size, and for others the changes in metabolism causes a net loss of energy which reduces the body size.

The results of the new study are consistent with earlier lab experiments and broad spatial scale studies suggesting that higher temperatures during rearing result in smaller adult body size.

"We humans use more energy when it is cold, because we must maintain a constant body temperature. But for butterfly larvae and other cold-blooded animals whose body temperature depends on the environment, the metabolism increases at higher temperatures because the biochemical processes are simply faster. Therefore, the larvae use more energy than they are able to gain from feeding. Our results indicate that this change is so significant that larval growth rate decreases. And when the larvae are smaller, the adult butterflies will also be smaller," explains Toke T. Hoye.

Arctic species under pressure

The consequences for the Arctic butterflies can be quite substantial. Smaller body size means that the butterflies are less mobile. As the species only live in the far North, the development could have significant consequences for their population dynamics and future geographic range.

"These butterfly species are under pressure from multiple sides. They live so far North that they cannot move to cooler regions, and they will probably disappear from the southernmost part of their range due to the warming temperatures. In addition, their dispersal capacity is deteriorating, and smaller body size may result in lower fecundity, so these Arctic species could face severe challenges in response to ongoing rapid climate change," says Toke T. Hoye.

Butterflies belong to a group of organisms that are particularly sensitive to changes in the environment. Therefore, long-term studies of butterflies and other insects are particularly suited to demonstrate the ecological consequences of global climate change.

###

The study has been carried out by researchers from Arctic Research Centre, Institute of Bioscience and Aarhus Institute of Advanced Studies at Aarhus University and Aarhus Natural History Museum, Denmark, and University of California.

The results have been published in the scientific journal Biology Letters.

For more information, please contact:

Senior scientist Toke T. Hoye
Aarhus Institute of Advanced Studies, Arctic Research Centre, and Department of Bioscience
Aarhus University, Denmark
Tel. +45 3018 3122
Email: tth@aias.au.dk

Joseph J. Bowden
Postdoc,
Arctic Research Centre, Aarhus University, Denmark
Tel: +45 2973 9698
Email: jjb@bios.au.dk

Media Contact

Toke T. Hoye
tth@aias.au.dk
45-30-18-31-22

 @aarhusuni

http://www.au.dk 

Toke T. Hoye | EurekAlert!

Further reports about: Arctic Metabolism body size body temperature larvae

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>