Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-arctic butterflies shrink with rising temperatures

07.10.2015

New research shows that butterflies in Greenland have become smaller in response to increasing temperatures due to climate change

New research shows that butterflies in Greenland have become smaller in response to increasing temperatures due to climate change.


Arctic fritillary (Boloria chariclea) is one of the two species that have become smaller due to climate change. This is demonstrated in a new study by Danish researchers. The scientists have measured the wing length of nearly 4,500 individuals collected annually between 1996 and 2013 from Zackenberg, Greenland and found that the blade length decreased significantly in response to warmer summers.

Photo: Toke T. Hoye

It has often been demonstrated that the ongoing rapid climate change in the Arctic region is causing substantial change to Arctic ecosystems. Now Danish researchers demonstrate that a warmer Greenland could be bad for its butterflies, becoming smaller under warmer summers.

Researchers from Aarhus University have measured wing length of nearly 4,500 individuals collected annually between 1996 and 2013 from Zackenberg Research Station in Northeast Greenland, and found that wing length has decreased significantly in response to warmer summers and at the same rate for both species investigated.

"Our studies show that males and females follow the same pattern and it is similar in two different species, which suggests that climate plays an important role in determining the body size of butterflies in Northeast Greenland," says senior scientist Toke T. Hoye, Aarhus Institute of Advanced Studies, Aarhus University.

Only very few field studies have been able to follow changes in the body size of the same species over a period where the climate has changed and this is the longest known time series on body size variation in butterflies, of which we are aware.

The larvae change metabolism

Body size change in response to rising temperature is an anticipated response to climate change, but few studies have actually demonstrated it in the field.

The response can go both ways; for some animal species, a longer feeding season results in increased body size, and for others the changes in metabolism causes a net loss of energy which reduces the body size.

The results of the new study are consistent with earlier lab experiments and broad spatial scale studies suggesting that higher temperatures during rearing result in smaller adult body size.

"We humans use more energy when it is cold, because we must maintain a constant body temperature. But for butterfly larvae and other cold-blooded animals whose body temperature depends on the environment, the metabolism increases at higher temperatures because the biochemical processes are simply faster. Therefore, the larvae use more energy than they are able to gain from feeding. Our results indicate that this change is so significant that larval growth rate decreases. And when the larvae are smaller, the adult butterflies will also be smaller," explains Toke T. Hoye.

Arctic species under pressure

The consequences for the Arctic butterflies can be quite substantial. Smaller body size means that the butterflies are less mobile. As the species only live in the far North, the development could have significant consequences for their population dynamics and future geographic range.

"These butterfly species are under pressure from multiple sides. They live so far North that they cannot move to cooler regions, and they will probably disappear from the southernmost part of their range due to the warming temperatures. In addition, their dispersal capacity is deteriorating, and smaller body size may result in lower fecundity, so these Arctic species could face severe challenges in response to ongoing rapid climate change," says Toke T. Hoye.

Butterflies belong to a group of organisms that are particularly sensitive to changes in the environment. Therefore, long-term studies of butterflies and other insects are particularly suited to demonstrate the ecological consequences of global climate change.

###

The study has been carried out by researchers from Arctic Research Centre, Institute of Bioscience and Aarhus Institute of Advanced Studies at Aarhus University and Aarhus Natural History Museum, Denmark, and University of California.

The results have been published in the scientific journal Biology Letters.

For more information, please contact:

Senior scientist Toke T. Hoye
Aarhus Institute of Advanced Studies, Arctic Research Centre, and Department of Bioscience
Aarhus University, Denmark
Tel. +45 3018 3122
Email: tth@aias.au.dk

Joseph J. Bowden
Postdoc,
Arctic Research Centre, Aarhus University, Denmark
Tel: +45 2973 9698
Email: jjb@bios.au.dk

Media Contact

Toke T. Hoye
tth@aias.au.dk
45-30-18-31-22

 @aarhusuni

http://www.au.dk 

Toke T. Hoye | EurekAlert!

Further reports about: Arctic Metabolism body size body temperature larvae

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>