Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hiding in plain sight: New species of flying squirrel discovered

07.06.2017

For hundreds of years, a species of flying squirrel was hiding right under (actually, above) our noses.

A new study published May 30 in the Journal of Mammalogy describes a newly discovered third species of flying squirrel in North America -- now known as Humboldt's flying squirrel, or Glaucomys oregonensis. It inhabits the Pacific Coast region of North America, from southern British Columbia to the mountains of southern California. Until now, these coastal populations were simply thought to be the already-known northern flying squirrel.


The newly-described Humboldt's flying squirrel is the third-known species of flying squirrel in North America.

Credit: Nick Kerhoulas

"For 200 years we thought we had only had one species of flying squirrel in the Northwest -- until we looked at the nuclear genome, in addition to mitochondrial DNA, for the first time," said study co-author Jim Kenagy, professor emeritus of biology at the University of Washington and curator emeritus of mammals at the Burke Museum of Natural History & Culture.

Biologists used to classify the flying squirrels of California and the coastal Pacific Northwest as northern flying squirrels. It wasn't until lead author Brian Arbogast, associate professor of biology at the University of North Carolina Wilmington, and formerly a postdoctoral researcher at UW and the Burke Museum, looked closely at the genetics of flying squirrel specimens from the Burke's collections that it became apparent that they may be a different species. Flying squirrels collected since the early 1900s in the Pacific Coast region often looked smaller and darker than their counterparts from east of the Cascades.

Ultimately, it was DNA testing that revealed a third species unique to the Pacific Northwest.

The results of the DNA analyses were striking: they indicated that no gene flow was occurring between the Pacific Coastal form and the widespread, inland, continental form of the northern flying squirrel, even when two occurred together.

Because the new study shows that Humboldt's and northern flying squirrels both occur together at the same places within some parts of Western Washington and southern British Columbia, it is possible that future studies might reveal hybridization between these two species, even though this study did not find the two species interbreeding in the areas the research team examined.

Kenagy, Arbogast and other researchers spent years studying small mammals in the Northwest and how they distributed themselves in the western and eastern mountain ranges, as recently as the period following the last Ice Age. In some cases, the eastern and western mammals evolved into different species over the past million years or so.

"It was a surprising discovery," said Kenagy. "We were interested in the genetic structure of small mammals throughout the Pacific Northwest, and the fact that in other cases we were aware that two different species had evolved in Eastern and Western Washington."

The new genetic study clearly demonstrates that Pacific Coast populations of flying squirrels from southern British Columbia, southward through western Washington and Oregon, and in California, now include members of the newly named species, Humboldt's flying squirrel.

The Humboldt's flying squirrel is known as a "cryptic" species -- a species that was previously thought to be another, known species because the two look similar.

This new discovery of the Humboldt's flying squirrel is the 45th known species of flying squirrel in the world. What are now three species of flying squirrels in North and Central America are all small, nocturnally-active, gliding squirrels that live in woodland habitats. These creatures don't actually fly like bats or birds. Instead, they glide from tree to tree by extending furred membranes of skin that stretch from the wrist of the forearm to the ankle on the hind leg. Their feather-like tail provides extra lift and also aids in steering. The gliding ability of flying squirrels is remarkable; they are capable of gliding for up to 100 meters and can make sharp, midair turns by using their tail as a rudder and moving their limbs to manipulate the shape and tautness of their gliding membranes.

The squirrel specimens in the Burke Museum's collections -- and other natural history museums around the world -- are standing by for future researchers to learn more about these remarkable "new" creatures.

###

Co-authors are Katelyn Schumacher with the University of North Carolina Wilmington, Nicholas Kerhoulas with the University of Alaska Fairbanks and the University of Alaska Museum, Allison Bidlack with the University of Alaska Southeast and Joseph Cook with the University of New Mexico. The research was funded by the University of Washington.

For more information, contact Godinez at 206-616-7538 or burkepr@uw.edu.

Media Contact

Andrea Godinez
burkepr@uw.edu
206-616-7538

 @UW

http://www.washington.edu/news/ 

Andrea Godinez | EurekAlert!

Further reports about: DNA last Ice Age northern flying squirrels squirrel

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>