Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping in spite of risk: Ants perform risk-averse sanitary care of infectious nest mates

21.02.2018

Ants adapt their care behavior to their own immune status | Paper in PNAS

Ants care for their sick nest mates in different ways, depending on their own immune status. When they themselves are susceptible to dangerous superinfections, they use a different method to care for sick colony members compared to ants that are not susceptible, thus protecting themselves from infection. This is the result of a study of Professor Sylvia Cremer’s research group at the Institute of Science and Technology Austria (IST Austria), with first authors Matthias Konrad and Christopher Pull. The study was published today in the journal PNAS.


Garden ant workers interacting with one another.

Roland Ferrigato and Sina Metzler, IST Austria

In their colonies, ants such as the invasive garden ant Lasius neglectus live in a very confined space. This carries the risk that diseases can spread rapidly and threaten the entire colony. Sylvia Cremer and her group have already shown in previous studies that ants of the species Lasius neglectus fend off the pathogenic fungus Metarhizium by intensively cleaning and caring for colony members whose bodies have been contaminated by fungal spores. In the current study, Sylvia Cremer and her group addressed the question of how the caring ants protect themselves from infection.

Care means protection and risk

There are two ways for ants to care for nest mates: either by grooming off pathogens or by chemically disinfecting them. However, the extensive contact between contaminated and caring ants during care may lead to a transmission of the pathogen, which often induces low-level infections in the caring individual that do not cause disease.

As the research team has shown in a previous study, such low-level infections of the caring ants stimulate their immune system and can lead to a protective effect against future infection, similar to the early form of vaccination used by humans, termed variolation. If this ant comes in contact with the same pathogen again in the future, its defense against the fungal pathogen is already upregulated, and the course of the disease is mild.

However, in the current study the research team showed that this immunization caused by low-level infections, unlike modern vaccinations in humans, has a cost. If the ant comes in contact with a second, different pathogen, it is not only unprotected, but is even more susceptible to the second pathogen, which can subsequently cause a highly detrimental, superinfection.

Flexible care protects against superinfection

Although ants with low-level infections are more susceptible to superinfections, the researchers show that this altered disease susceptibility affects how ants care for their infectious nest mates. They continue to perform care, but alter how they do so to decrease their risk of contracting a second infection. This risk avoidance is flexible and depends on the current immune status of the ant. If an ant is protected against a pathogen because it is currently immunized, it grooms the infected nestmate more than non-immunized ants. “This close contact means that the caring ant is exposed to a large number of fungal spores from the infectious nest mates, but it is less susceptible to them because of previous immune stimulation,” explains Sylvia Cremer.

The situation is different when the ant encounters a nest mate carrying a pathogen that the caring ant is susceptible to. If the ant has developed a susceptibility to pathogen B due to a previous infection with pathogen A, then it sprays the contaminated nestmate carrying pathogen B with formic acid to neutralize the pathogen. This avoids the need for grooming and the close contact that comes with it, preventing pathogen transmission and protecting the caring ant from superinfection.

“This risk-averse care improves and maintains the health of the caring animals and thus of the whole colony. In humans, nursing staff and doctors also pay attention to their immune status, for example by vaccinating before entering a dangerous zone. Importantly, ants are capable of this adjustment without the need for vaccination records that humans typically rely on” explains Sylvia Cremer.

Matthias Konrad and Christopher Pull are the first authors of the study. Matthias Konrad was a PhD student supervised by Sylvia Cremer from 2009 to 2014, and joined IST Austria in 2010 as one of the first PhD students, and stayed for one year after his PhD as a postdoc in the Cremer group. Christopher Pull was a PhD student in the group of Sylvia Cremer at IST Austria from 2012 to 2017, and is now a postdoc at the Royal Holloway University, London. Sylvia Cremer studies the social immune system in ants with the aim of finding out more about epidemiology and disease dynamics in societies.

About IST Austria – www.ist.ac.at

The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor’s or master’s degree in biology, neuroscience, mathematics, computer science, physics, and related areas.

Original article:
Matthias Konrad, Christopher D. Pull et al: "Ants avoid superinfections by performing risk-adjusted sanitary care"
http://www.pnas.org/content/early/2018/02/16/1713501115

Weitere Informationen:

http://www.pnas.org/content/early/2018/02/16/1713501115 Link to PNAS article
http://ist.ac.at/research-groups-pages/cremer-group/ Research group website

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Further reports about: Lasius neglectus ants colony fungal spores immune system infections

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>