Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heavily Wired: How Microorganisms organise their power supply via nano-wires

22.10.2015

Electrical energy from the socket - this convenient type of power supply is apparently used by some microorganisms that form nanowire connections to transfer energy. Researchers have now discovered such small power grids between dual-species microbial consortia that jointly degrade methane. Using genetic methods and electron microscopy the scientists demonstrated how the wire-like connections between the cells are relevant in energy exchange. Now the researchers report their findings in the journal Nature.

Since more than a decade, scientists from Bremen, Germany, study how methane in the seabed is degraded by microorganisms. So far, it has remained a mystery how the methane consumers tap into the energy contained in methane, and how they could share that energy. New results show that direct interspecies electron transfer between cells is likely the solution to this puzzle.


The archaea depicted in red yield eight electrons from the oxidation of a single methane molecule. The electrons travel via the nanowires to the sulphate reducing bacteria (green).

Max Planck Institute for Marine Microbiology, Bremen


The wires stretch out for several micrometres, longer than a single cell. The white bar represents the length of one micrometre. The arrows indicate the nanowires. (A=ANME-Archaea, H=HotSeep-1 partne

Max Planck Institute for Biophysical Chemistry, Göttingen

Electric power as microbial energy source

It was a spectacular finding when in 2010 researchers discovered electrical wiring between microorganisms using iron as energy source. Immediately the question came up, if electric power exchange is common in other microbially mediated reactions.

One of the processes in question was the anaerobic oxidation of methane (AOM) that is responsible for the degradation of the greenhouse gas methane in the seafloor, and therefore has a great relevance for Earth climate. The microorganisms involved have been described for the first time in 2000 by researchers from Bremen and since then have been extensively studied.

The greenhouse gas methane in the seabed

In the ocean, methane is produced from the decay of dead biomass in subsurface sediments. The methane rises upwards to the seafloor, but before reaching the water column it is degraded by special consortia of archaea and bacteria. The archaea take up methane and oxidise it to carbonate. They pass on energy to their partner bacteria, so that the reaction can proceed.

The bacteria respire sulphate instead of oxygen to gain energy (sulphate reducers). This may be an ancient metabolism, already relevant billions of years ago when the Earth’s atmosphere was oxygen-free. Yet, today it remains unknown, how the anaerobic oxidation of methane works biochemically.

Dr. Gunter Wegener, who authors the publication together with PhD student Viola Krukenberg, says: “We focused on thermophilic AOM consortia living at 60 degrees Celsius. For the first time we were able to isolate the partner bacteria to grow them alone. Then we systematically compared the physiology of the isolate with that of the AOM culture. We wanted to know which substances can serve as an energy carrier between the archaea and sulphate reducers.”

Most compounds were ruled out quickly. At first, hydrogen was considered as energy source. However, the archaea did not produce sufficient hydrogen to explain the growth of sulphate reducers – hence the researchers had to change their strategy.

Direct power wires and electron transporters

One possible alternative was to look for direct connections channelling electrons between the cells. Using electron microscopy on the thermophilic AOM cultures this idea was confirmed. Dietmar Riedel, head of electron microscopy facilities at the Max Planck Institute in Goettingen says: “It was really challenging to visualize the cable-like structures. We embedded aggregates under high pressure using different embedding media. Ultrathin sections of these aggregates were then examined in near-native state using transmission electron microscopy.”

Viola Krukenberg adds: "We found all genes necessary for biosynthesis of the cellular connections called pili. Only when methane is added as energy source these genes are activated and pili are formed between bacteria and archaea.”

With length of several micrometres the wires can exceed the length of the cells by far, but their diameter is only a few nanometres. These wires provide the contact between the closely spaced cells and explain the spatial structure of the consortium, as was shown by a team of researchers led by Victoria Orphan from Caltech in the same issue of Nature.

Professor Antje Boetius, leader of the research group, explains how the research on the wired consortia will proceed: "Consortia of archaea and bacteria are abundant in nature. Our next step is to see whether other types also show such nanowire-like connections. It is important to understand how methane-degrading microbial consortia work, as they provide important functions in nature."

Publication
Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Gunter Wegener, Viola Krukenberg, Dietmar Riedel, Halina E. Tegetmeyer and Antje Boetius. Nature, 2015 doi:10.1038/nature15733
Involved research institutes
Max Planck Institute for Marine Microbiology, Bremen, Germany.
MARUM, Center for Marine Environmental Sciences, University Bremen, Germany.
Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany.
Center for Biotechnology, Bielefeld University, Bielefeld, Germany.

For more information please contact
Dr. Gunter Wegener
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1
D-28359 Bremen, Germany. Phone:+49 421 2028 867
gwegener@mpi-bremen.de

or the press officer
Dr. Manfred Schlösser
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1
D-28359 Bremen, Germany. Phone:+49 421 2028 704
mschloes@mpi-bremen.de

Weitere Informationen:

http://www.mpi-bremen.de web site of the Max Planck Institute for Marine Microbiology

Dr. Manfred Schloesser | Max-Planck-Institut für marine Mikrobiologie

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>