Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Happiness hormone" dopamine controls immune defence

13.07.2017

HZI researchers simulate mechanism of communication in infection processes

When a foreign substance invades our body, the body produces antibodies that recognise and fight the intruder. In specialised regions of the lymph nodes, so-called germinal centres, these antibodies are optimised with respect to the most specific immune response against pathogens, and the most suitable antibodies are selected.


A B-cell binds an antigen-specific T-cell in order to present its antigen.

HZI/Manfred Rohde

An international group of researchers that includes Michael Meyer-Hermann from the Helmholtz Centre for Infection Research and the Braunschweig Integrated Centre of Systems Biology recently discovered and simulated a mechanism in human germinal centres that is controlled by the neurotransmitter dopamine. They detected a promoting influence of the dopamine, as they found the formation of antibodies to take place earlier and to be more pronounced.

It is a decisive advantage to have the antibody formation in human germinal centres in the course of immune reactions against rapidly proliferating pathogens be regulated by a neurotransmitter. Surprisingly, this newly discovered mechanism does not exist in mice. The study is published in Nature.

Only because of its immune system, our body is capable of surviving in an environment full of pathogens. In addition to our innate immunity, we have an adaptive system that is formed only after birth in a fine-tuned interplay with our environment. In response to the ingress of a foreign substance into our body, specialised defence cells – B-lymphocytes, also called B-cells – produce antibody molecules.

These antibodies recognise the invader by its structural features – i.e. the antigens – in an effort to control them. When a B-cell binds to an antigen by means of its receptor, the B-cell either produces a matching antibody directly or it gets involved in the formation of a germinal centre, in which these antibodies are developed further and are then mass-produced.

"Germinal centres are particularly interesting for infection research. They are basically the training facilities for antibodies," says Prof Michael Meyer-Hermann. "They develop in the course of an immune response in the lymph nodes into which various kinds of immune cells migrate.“ Meyer-Hermann heads the "Systems Immunology" department at the Braunschweig Integrated Centre of Systems Biology (BRICS), a joint research centre of the Helmholtz Centre for Infection Research (HZI) and the Technische Universität Braunschweig.

Inside the germinal centre, cooperation takes place between the B-cells and another type of immune cells, the so-called T-lymphocytes (or T-cells): "The activated B-cells proliferate and diversify their antibodies by way of mutation. The affinity of the antibodies for their antigens is increased by selection in interaction with the T-cells. Only the most effective ones remain. This evolutionary process is also called affinity maturation," says Meyer-Hermann. "The B-cell is the only cell known to date to actively mutate and, by doing so, to facilitate an evolutionary process inside an organism that is triggered by each vaccination."

While B-lymphocytes produce antibodies that are directed specifically against certain pathogens or harmful substances, T-cells recognise fragments of the antigen that were bound by and presented on the surface of B-cells. The focus of the researchers was on the close interaction of these T- and B-cells in the germinal centre. "When B-cells and T-cells get in contact to each other they form a structure called ‘immunological synapse’ where the membranes of the cells touch", says Meyer-Hermann, and "the analogy to the synapses between nerve cells has fascinated many researchers. Both synapses are all about the transmission of information." From earlier studies, it was known that there are molecules that have different functions in the brain and in the immune system. Dopamine is one of the major neurotransmitters in the central nervous system.

In the scope of a project partly funded by the Human Frontier Science Program (HFSP)*, Carola Vinuesa (Canberra, Australia), Michael Dustin (Oxford, UK) and Michael Meyer-Hermann (Braunschweig, Germany) in collaboration with Claudio Doglioni (Milan, Italy) investigated the influence of the neurotransmitter, dopamine, on the germinal centre reaction in human tonsils. They were able to show in their study that T-cells in human germinal centres release dopamine, which leads to a more rapid upregulation of the signals required for the selection of B-cells. The signal cascade induced by dopamine lasts only for 30 minutes in B-cells of human germinal centres. By comparison, the same signal cascade takes over four hours in mice that are lacking this dopamine-dependent signaling path. "Since it is not possible to study the impacts on humans, we investigated certain questions by way of computer simulations," says Meyer-Hermann. The aim of this study was to determine how the affinity maturation of B-cells in the germinal centre is changed by the additional dopamine-dependent signaling pathway.

For the simulation of a germinal centre reaction, Sebastian Binder and Philippe Robert from Meyer-Hermann’s team used a mathematical model that was validated by a large amount of experimental data. Germinal centres were simulated with and without the dopamine-dependent signaling pathway based on the available findings. "Much to our surprise, we found dopamine to have no influence on the affinity maturation. Our intuitive guess that antibodies would be produced earlier in time was confirmed though," says Meyer-Hermann. "The unexpected and most pronounced effect of the dopamine-controlled process was that a clearly increased amount of antibodies was produced." The result of the mathematical modelling of the researchers was that the more rapid signaling cascade in B-cells can accelerate the output of the germinal centre by 24 hours and can clearly increase the total amount of antibody produced.

"It is fascinating that the entire signaling pathway for control of the immune response by means of the dopamine neurotransmitter exists in humans, but not in mice," says Meyer-Hermann. This might be of interest not only for improvement of immune responses after vaccination in the elderly population. The use of a dopamine-dependent signaling pathway in the immunological synapse of T- and B-cells in lymph nodes might be an evolutionary advantage during an infection. This is equivalent to a survival advantage during an infection by rapidly developing viruses, toxins or other infectious substances that can be stopped by large quantities of highly selective antibodies. "For certain diseases, it is very important to have the antibodies available a little earlier and in larger amounts," says Meyer-Hermann. "Especially for Ebola patients, the production of antibodies at an earlier point in time is extremely relevant. It makes the difference between life and death of the patient."

*: Project “Cooperation strategy and information processing in and between germinal centre reactions” (RGP0033/2015)

The press release and a picture are available on our website: https://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/happiness...

Original publication:
I. Papa, M. Ponzoni, D. Saliba, P.F. Canete, P. Gonzalez-Figueroa, S. Bustamante, M. Grimbaldeston, R.A. Sweet, H. Vohra, M. Meyer-Hermann, M.L. Dustin, C. Doglioni, C.G. Vinuesa: TFH-derived dopamine accelerates productive T:B synapses in human germinal centers. Nature, 2017, DOI: 10.1038/nature23013

Helmholtz Centre for Infection Research:
Scientists at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, Germany, are engaged in the study of different mechanisms of infection and of the body’s response to infection. Helping to improve the scientific community’s understanding of a given bacterium’s or virus’ pathogenicity is key to developing effective new treatments and vaccines. http://www.helmholtz-hzi.de/en

Braunschweig Integrated Centre of Systems Biology:
The Braunschweig Integrated Centre of Systems Biology (BRICS) is a joint research facility of the HZI and the Technische Universität Braunschweig. It is the aim of BRICS to conduct research in areas such as infection, formation of agents, and development of biotechnology processes by means of systems biology. http://www.tu-braunschweig.de/brics

Contact:
Susanne Thiele, Press Officer
susanne.thiele@helmholtz-hzi.de
Dr Andreas Fischer, Editor
andreas.fischer@helmholtz-hzi.de

Helmholtz Centre for Infection Research
Press and Communications
Inhoffenstr. 7
D-38124 Braunschweig
Germany

Phone: +49 531 6181-1404

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>