Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Haplobank – a biobank of reversible mutant embryonic stem cells

28.09.2017

The Penninger lab at the IMBA developed a biobank of revertible, mutant embryonic stem cells, published in the current issue of Nature. This cell bank – called Haplobank - contains over 100,000 mutated, conditional mouse embryonic stem cell lines, targeting about 70% of the protein-coding genome.

Genetic screens have revolutionized our understanding of biological processes and disease mechanisms. Recent technical advances have broadened the available approaches for disrupting gene function in a cell population prior to screening, from chemical and insertional mutagenesis to RNA interference, and, most recently, CRISPR-mediated genome editing.


Haplobank contains over 100,000 mutated, conditional mouse embryonic stem cell lines, targeting about 70% of the protein-coding genome.

(c)Izabella Kaminski


The two first authors Ulrich Elling and Reiner Wimmer.

(c)IMBA

However, RNA interference and CRISPR-mediated gene targeting often suffer from poor efficiency and off-target effects. In addition, most mutagenesis approaches are not reversible – making it difficult to rigorously control for the frequent genetic and epigenetic differences between ostensibly identical cells. These issues can confound the reproducibility, interpretation and overall success of genetic screens.

Major concerns about scientific reproducibility and rigor have emerged in recent years. Amgen and Bayer, as well as The Reproducibility Initiative, have been unable to replicate many high-profile cancer studies. Indeed, it is not uncommon to obtain different results from experiments with the same cell line in two different laboratories. These inconsistencies can arise for various reasons. Regardless, irreproducible results waste money, damage the credibility of science and scientists, and delay or undo progress, including the development of effective therapies.

To overcome these problems, the Penninger lab at the IMBA developed a biobank of revertible, mutant embryonic stem cells, published in the current issue of Nature. This cell bank – called Haplobank - contains over 100,000 mutated, conditional mouse embryonic stem cell lines, targeting about 70% of the protein-coding genome (almost 17,000 genes). “Haplobank is available to all scientists, and represents the largest ever library of hemizyogous mutant embryonic stem cell lines to date. The resource overcomes issues arising from clonal variability, because mutations can be repaired in single cells and at whole genome scale,” explains Ulrich Elling, first and corresponding author of the current publication in Nature.

Host-pathogen interactions and drug discovery

As a proof-of-principle, the authors performed a genetic screen to uncover factors required for infection with rhinovirus – the cause of the common cold. They discovered that rhinovirus requires a previously unknown host cell factor, phospholipase A2G16 (PLA2G16), to kill cells. Further, they showed that a specific domain of PLA2G16 is required for infection and may be an attractive drug target. Interestingly, PLA2G16 was also shown recently to be necessary for successful infection by related viruses, including poliovirus.

Novel genes for blood vessel development

In another proof-of-principle screen, the authors leveraged the pluripotent potential of embryonic stem cells by differentiating them into blood vessel organoids. The formation of blood vessels (angiogenesis) is critical for development and for tissue maintenance, as well as for diseases like cancer. The authors screened candidate angiogenesis genes that were represented in Haplobank, and discovered multiple novel factors that affect blood vessel growth in organoids. Importantly, they observed a strong variability between independent clones, highlighting the advantage of repairable mutagenesis for comparing mutants with their genetically repaired sister clones.

“Haplobank can be used for screens to make entirely new insights into biology and health. Importantly - because gene knockouts can be repaired in our embryonic stem clones - this resource also enables well-controlled, robust and reproducible validation experiments. We feel this is a critical point and contribution, given the current efforts to improve the rigor of scientific research." Says Josef Penninger, IMBA Director and last author.

Origina lpublication: Elling, Wimmer et al. „A reversible haploid murine ES cell biobank for functional genomics”, Nature 10.1038/nature24027

About IMBA
IMBA - Institute of Molecular Biotechnology is one of the leading biomedical research institutes in Europe focusing on cutting-edge functional genomics and stem cell technologies. IMBA is located at the Vienna BioCenter, the vibrant cluster of universities, research institutes and biotech companies in Austria. IMBA is a subsidiary of the Austrian Academy of Sciences, the leading national sponsor of non-university academic research. www.imba.oeaw.ac.at

About the Vienna BioCenter
Vienna BioCenter (VBC) is a leading life sciences location in Europe, offering an extraordinary combination of research, business and education on a single campus: 1.700 employees, 1.300 students, 86 research groups and 18 biotech companies. Scientists from 65 nations create a highly dynamic environment of international standards. www.viennabiocenter.org

Ines Méhu-Blantar | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>