Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gut microbiota - Tiny helpers against Samonella

16.06.2017

HZI scientists discover immune mechanism against Salmonella in the mucosa of the gut

Scientists studying infections used to focus mainly on the direct interaction of the immune system with pathogens, but have since moved on to look more closely at the interactions that go on between microbiota, immune system and pathogen. Using mouse models, researchers from the Helmholtz Centre for Infection Research (HZI) recently elucidated a relationship between gut microbiomes of various compositions and the susceptibility to Salmonella infections.


Salmonellae

HZI/ Manfred Rohde / Marc Erhardt

In their study, the scientists from Braunschweig identified several bacterial families that have a protective effect against Salmonella. The researchers also elucidated the immune mechanism in the mucosa of the gut that is regulated by the protective bacterial families. Published in Cell Host & Microbe, the results of the study of the HZI scientists are an important step towards a better understanding of the interactions of the triad of microbiota, immune system and pathogen.

Trillions of microorganisms colonise the surfaces of the human body as permanent, helpful companions. The composition of the so-called microbiota, i.e. the entirety of microorganisms colonising humans and animals, varies very strongly between individuals. Aside from genetic factors, environmental influences - such as nutrition - are the causes of this diversity. The variability of the microbiota has been correlated for some years to the difference in the susceptibility of humans to intestinal infections.

"In recent years, the microbiota has become an ever more important aspect in the research on intestinal diseases. The microbiota fights pathogens in multiple ways: Firstly, the microbiota competes with pathogens for nutrients and thus prevents the colonisation of the host. On the other hand, the protection from pathogens can also be indirect through the triggering of a protective immune response of the host," says Dr Till Strowig, who is the head of the "Microbial Immune Regulation" junior research group at the HZI. "Our study investigated the extent to which the microbiome affects the protection from infection by Salmonella."

The researchers used a mouse model to identify those bacteria of the microbiota that contribute to the protection against Salmonella infection. In the course of this study, they subjected genetically identical mouse lines that differed only in the composition of the microbiota to a Salmonella infection. The weight loss and the survival rate of the mice during the ongoing infection were documented such that both the most sensitive mouse line and the most resistant mouse line were identified by the end of the experiment.
The researchers also used the latest high-throughput sequencing methods to study the differences in the microbial communities of these mouse lines in great detail. Especially the number of certain bacterial families (Prevotallaceae and Verrucomicrobiaceae) was found to be clearly higher in the resistant mouse line as compared to the sensitive mouse line.

Based on these insights, the researchers transplanted several of these bacterial strains to sensitive mice. In response, the mice showed a clearly increased level of protection with respect to Salmonella. "This experiment confirmed that the bacterial composition of the intestinal microbiota plays an important role in the protection from Salmonella infections. And we were able to identify the bacterial families that impart the protection," says Strowig.

The research group also elucidated the underlying mechanism of the protection by these bacteria. It was known from previous studies of other scientists that the immune response to Salmonella involves the production of antimicrobial agents and cytokines - i.e. proteins with an effect on the growth and function of target cells - in an early phase of the immune response.

The mice harbouring the protective bacterial families produced increased amounts of the cytokine, interferon-gamma (IFNγ). This protein plays a critical role in the initiation of immune responses to bacterial pathogens.

Even before infection by Salmonella, the scientist noted a strong increase in the IFNγ production potential of cells of the innate immune system - i.e. the innate lymphocytes - and of the acquired immune system - i.e. the so-called T cells. After infection, these cells also produced increased levels of IFNγ.

"In order to exclude the possibility that other factors might be responsible for the increased resistance to Salmonella, we did another experiment in which we suppressed the IFNγ production by using animal lines that are unable to produce this interferon. Even when the protective bacterial cocktail was added in this experiment, no elevated level of protection was generated," says Strowig.

Unexpected by the researchers, the fight against Salmonella takes place not only on the inside of the gut. Instead, in the case they studied, the microbiota helps the host to fight the pathogens also inside the mucosal tissue of the gut, which the salmonellae need to penetrate for infection. "So the great surprise in our results was not that there is a correlation between the composition of the intestinal microbiota and the course of disease, but the underlying mechanism," says Strowig.

Further studies are planned to find out which of the two types of immune cells - T cells or innate lymphocytes - are more important for the response of the immune system of the intestinal mucosa. The study presented here was done in collaboration with Richard A. Flavell and Andrew L. Goodman (both Yale University, USA) as well as Marc Erhardt (HZI), Ulrich Kalinke (Twincore) and André Bleich (MHH) as local partners.

Original publication:
Sophie Thiemann, Nathiana Smit, Urmi Roy, Till Robin Lesker, Eric J.C., Gálvez, Julia Helmecke, Marijana Basic, Andre Bleich, Andrew L. Goodman, Ulrich Kalinke, Richard A. Flavell, Marc Erhardt, Till Strowig: Enhancement of IFNγ production by distinct commensals ameliorates Salmonella induced disease. Cell Host & Microbe, 2017, http://doi.org/10.1016/j.chom.2017.05.005

The Helmholtz Centre for Infection Research:
Scientists at the Helmholtz Centre for Infection Research (HZI) investigate the mechanisms of infections and of the defences against infections. What is it that makes bacteria or viruses pathogenic? The answer to this question is expected to be key to the development of new medications and vaccines. www.helmholtz-hzi.de

Weitere Informationen:

https://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/gut_micro... - link press release
http://doi.org/10.1016/j.chom.2017.05.005 - link publication
http://www.helmholtz-hzi.de - Webpage of HZI

Susanne Thiele | Helmholtz-Zentrum für Infektionsforschung

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>