Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ground squirrels use the sun to hide food

12.09.2016

Ground squirrels use information on the position of the sun when hiding their food and reuse this information to find their food stash again. The position of the sun serves as a reference point for the animals, which live in southern Africa, to orient themselves and adjust the direction they are traveling in. A study published by researchers from the University of Zurich sheds new light on the old question as to how animals find their bearings within their environment.

Jamie Samson and Marta Manser from the Department of Evolutionary Biology and Environmental 1Studies at UZH studied colonies of Cape ground squirrels (Xerus inauris) in the wild at the Kalahari Research Center in South Africa.


Cape ground squirrel hiding his food at a cache.

Brittany Sumner, Kalahari Research Centre

The diurnal rodents temporarily store their food reserves in several hiding places. As their habitat is very arid and sparsely vegetated, points of reference in the environment, such as trees or bushes, are few and far between.

The UZH researchers have now discovered how the social rodents orient themselves to find their way back to their temporary food stashes. “The squirrels probably use the position of the sun as the most important cue to roughly adjust their direction of movement,” explains Samson.

Position of the sun as a rough guide

The behavioral biologists gave the ground squirrels food to hide. The direction in which the rodents bolted with their spoils was recorded with the aid of GPS points. The striking thing was that the animals moved in an almost straight line either towards or away from the sun to find a suitable hiding place.

Every time, the horizontal angle of their direction of movement deviated slightly from the direction of the sun. “Based on this movement pattern,” interprets Samson, “we presume that Cape ground squirrels use the position of the sun at a particular time of day as a rule of thumb to find their bearings when searching for a place to hide their food.”

Next, the researchers set about determining whether the Cape ground squirrels also used the position of the sun to find their food stash again. They noted the time when the animals hid the food and recorded when exactly they returned to collect it by setting up cameras near the hoard. Sure enough, there was a pattern here, too: The ground squirrels tended to recover their food almost exactly 24 hours later – i.e. at a time when the sun was in virtually the same position in the sky as the previous day.

Partially flexible orientation depending on group size

Moreover, the scientists observed that the ground squirrels sometimes recovered their food before the 24 hours had elapsed – when the sun was at the same mirrored angle to the 24-hour position. According to Samson, the rodents therefore have two possible moments to recover food from a hiding place selected the previous day: “The squirrels seem to have a certain flexibility regarding when they recover their food. This usually happens before the 24-hour point, if there are more individuals at the group during that time – to prevent the food from being stolen by rivals.”

Animals such as honeybees or carrier pigeons have long been known to use the sun as a navigational aid. Previously, it was assumed that this either happened time-dependently, i.e. with specific position information, or the animals have a kind of compass, which they use to compensate for shifts in the sun’s position. The UZH scientists have now found an intermediary system between these two systems revealing that Cape ground squirrels are able to use the sun as a navigational aid in a flexible, temporary way.

Literature:
Jamie Samson and Marta B. Manser Use of the sun as a heading indicator when caching and recovering in a wild rodent. Scientific Reports. September 1, 2016. doi: 10.1038/srep32570

Contakt:
Dr. Jamie Samson
Department of Evolutionary Biology and Environmental Studies
University of Zurich
Phone: +44 74 8762 7499
E-mail: jamie.samson@ieu.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/en/Press-Releases/2016/cape-ground-squirrel.htm

Kurt Bodenmüller | Universität Zürich

Further reports about: Cape ground squirrels Evolutionary UZH Xerus inauris honeybees pigeons

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>