Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gone with the wind

21.10.2015

Migratory birds need less time to travel longer routes when they optimize for wind support.

Each year migratory birds travel over thousands of kilometres. In spring and autumn, billions of individuals move from colder and less productive areas across vast distances to warmer and more productive places. To do so, however, it seems that the shortest route does not necessarily grant the fastest journey. Birds can save energy and time if they use wind support.


Based on the global weather data from the past 21 years, researchers have developed a model that allows them to calculate the optimal migration routes of migratory birds. It shows that the shortest flight time is not necessarily the result of the shortest route. The model also takes into account spatial and temporal changes in wind conditions.

© http://www.bioinfo.mpg.de/flyways / Nasa/ Blue Marble

Researchers at the Max Planck Institute for Ornithology in Radolfzell Germany have calculated optimal routes in respect to wind support globally. Their research shows that birds using optimal wind conditions can save up to a quarter of travel time.

Thus birds optimising on wind support should arrive earlier and in better conditions and have higher chances of survival and reproduction. The knowledge about such optimal flyways could spread over generations in migratory species.

On their migratory journey, birds cross oceans, the highest mountains, and deserts. The arctic tern, for example, holds the world record in annual avian travel distance, where it moves between its breeding grounds in the Arctic to winter in the Antarctic. Using satellite based technology, scientists are just on the verge of unravelling these phenomena.

Scientists, led by Kamran Safi at the Max Planck Institute for Ornithology have now calculated that the route with the shortest distance between two points on the globe almost never represents the fastest option. They propose that it is beneficial for migratory birds to take detours, thereby using wind support on their journeys.

"Of course the birds cannot forecast weather," says Bart Kranstauber, first author of the study. "But through natural selection or learning, it is possible that knowledge about the optimal route can spread in a species over time." This, however, only works because there are predictable patterns in the wind conditions over years

Tailwind saves energy

"Quite a few of the routes we calculated match what we know some birds actually do," explains Safi. And the models suggest that it is energetically cheaper to fly south to Africa in the autumn using a more easterly detour and to return to Europe on a westerly route, giving rise to a so-called "loop migration". This pattern matches what is known from the common cuckoo.

The birds can save up to a quarter of their time if they choose to optimise their route in respect to wind instead of simple distance. Thus, they probably would be less fatigued and have a head start when it is comes to occupying good nesting sites. This in turn can decrease mortality, reduce recovery times and overall increase reproductive output of those individuals taking the optimal routes. Travelling along optimal routes can therefore become the winning strategy through natural selection or tradition.

More than wind

Safi and his group use weather data collected from 1990 until 2010 and calculated the most efficient routes in respect to wind support for 102 departure and arrival locations in the northern hemisphere connecting to 65 locations in the southern hemisphere. And although the programme ignores all other important factors in bird migration, the results are a striking match for some known flyways.

Based on this model, the researchers want to investigate when and where bird migration deviates from the simple assumptions, adding more complexity to better understand the importance of additional factors for bird migration. "We now want to know where the model fails and why, which will help us to derive a better understanding of what actually shapes the fascinating phenomenon."

One of the still unresolved issues in bird migration is how birds navigate over such vast distances and can potentially master the task of following an optimal route.


Contact

Dr. Kamran Safi
Max Planck Institute for Ornithology (Radolfzell), Radolfzell
Phone: +49 7732 150-132

Email: ksafi@orn.mpg.de


Daniel Piechowski
Max Planck Institute for Ornithology (Radolfzell), Radolfzell
Phone: +49 7732 1501-19

Email: dpiechowski@orn.mpg.de


Original publication
B. Kranstauber, R. Weinzierl, M. Wikelski , and K. Safi

Global aerial flyways allow efficient travelling.

Ecology Letters; 19 October, 2015 (DOI: 10.1111/ele.12528)

Dr. Kamran Safi | Max Planck Institute for Ornithology (Radolfzell), Radolfzell
Further information:
https://www.mpg.de/9710378/migratory-birds-flight-routes

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>