Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gone with the wind: A new project focusses on atmospheric input of phosphorus into the Baltic Sea

04.09.2015

In August, the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) received the funding approval from the German Federal Environmental Agency (UBA) referring to a two-year pilot study on the atmospheric input of phosphorus in the Southern Baltic Sea. The project started with the beginning of September.

Over-fertilization and its consequences still are the major environmental issues of the Baltic Sea. To reduce the discharge of nutrients, therefore, is of utmost importance in all Baltic Sea riparian countries. A good environmental status as described in the Marine Strategy Framework Directive to be accomplished by the year 2020 will not be in reach without measures to reduce the nutrient load.

Great progress was already made in reducing the riverine loads. But apart from this, input via so called „diffuse sources“ – a category which also comprises the atmospheric input - still are difficult to handle. To date, the amount entering the Baltic via this pathway is estimated to sum up to 2.100 tons, representing 5.5% of the total 38.300 tons of phosphorous discharged into the Baltic. It is on this basis, that reduction goals for phosphorus were calculated.

However, there were studies resulting in values of 9.100 tons of annual atmospheric input. In case, these figures turn out to be more realistic than the former estimations, the phosphorus input had to be reduced by a much higher rate than currently debated in order to reach a good environmental status.

Within the new project the measuring campaigns will cover all four seasons, both, on- and off-shore. A further goal will be to determine the share of non-natural sources, as only those are considered to be subject to reduction measures.

In contrast to the atmospheric sources of nitrogen which due to its negative effects on the human health and the ecosystems is constantly under observation, the anthropogenic sources of phosphorus are only scarcely known. Scientists assume that it is mainly discharged in form of particles, like pollen, dust escaping from fertilizer production plants or ignition processes. Wind erosion on open arable land or forest clearance areas will surely contribute to a transport of phosphorous-containing material into the sea.

Besides improving the state of knowledge, the new project will also aim at the development of recommendations referring to the description of reduction measures within the frame of a new environmental goal indicator „Atmospheric Phosphorus Deposition“.

Scientific Contact:
Dr. Günther Nausch | Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde
Phone: +49 381 5197 332 | guenther.nausch@io-warnemuende.de

Press and Public Relations at IOW:
Dr. Barbara Hentzsch | phone: +49 381 5197 102 | barbara.hentzsch@io-warnemuende.de

The IOW is a member of the Leibniz Association with currently 89 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.64 billion Euros. www.leibniz-association.eu

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>