Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Going against the flow – Targeting bacterial motility to combat disease


The ability to move enables many bacteria to reach a specific niche or to leave hostile environments. The bacterium Mycoplasma gallisepticum is a poultry pathogen that is capable of gliding over solid surfaces.

Scientists at the University of Veterinary Medicine, Vienna have now identified the proteins responsible for this gliding mechanism. Interrupting the gliding mechanism could be a way to make the bacteria less virulent, but it could also help in the development of vaccines against the pathogen. The results were published in the journal Veterinary Research.

Mycoplasma gallisepticum on epithelial cells of a chicken trachea.

Photo: Michael Szostak / Vetmeduni Vienna

Mycoplasma gallisepticum causes chronic respiratory disease in birds. The illness particularly affects domestic chicken and turkey flocks. The bacteria are especially life-threatening for the animals when they occur in combination with other infections. In order to control the spread of the disease, poultry farms in the EU must be proven free from Mycoplasma gallisepticum or face being closed.

Mycoplasma gallisepticum is related to the human pathogen Mycoplasma pneumoniae, the causative agent of human bronchitis and pneumonia. Mycoplasmas are among the world’s smallest microorganisms. Scientists even speak of degenerative bacteria. Over the course of evolution, mycoplasmas have thrown most of their genetic material over board, resulting in one of the smallest bacterial genomes. This is what makes them such efficiently adapted pathogens in humans and animals.

At least three proteins responsible for the gliding mechanism

The gliding motility of M. gallisepticum was first observed in the 1960s. However, it has so far been unclear how exactly the gliding mechanism works and which proteins make gliding possible. First author Ivana Indikova and study director Michael Szostak of the Institute of Microbiology at the Vetmeduni Vienna have now found that gliding requires the proteins GapA, CrmA and Mgc2. “If the bacteria are missing one of these three proteins, they are no longer able to move. We want to know if non-motile mycoplasmas are less infectious. If that were the case, we could target the motility genes to turn them off and so render the bacteria harmless,” Szostak explains.

Gliding motility could even contribute to the ability of mycoplasmas to invade and traverse body cells. This could allow them to safely evade the body’s immune system and the infection could spread efficiently through the host body.

The experts can also imagine the development of a vaccine. “Non-motile and non-pathogenic bacteria could form the basis for a new vaccine which the immune system could recognize and fight without causing any illness in the organism,” explains Szostak.

Do gliding mycoplasmas go against the flow?

The ability to move thus gives the pathogens certain advantages. It remains unknown, however, which stimuli M. gallisepticum responds to when gliding. Szostak suspects: “Most mycoplasmas cannot glide. Gliding species have so far been found only in the respiratory and genital tracts – places in which there is a directional mucus flow. We believe that the gliding bacteria possibly move against this flow in order to reach deeper-lying regions of the body. We are currently planning further experiments to attempt to answer this question.”


The article „First identification of proteins involved in motility of Mycoplasma gallisepticum”, by Ivana Indikova, Martin Vronka and Michael P. Szostak was published in the journal Veterinary Research. DOI: 10.1186/s13567-014-0099-2

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms.

Scientific Contact:
Dr. Michael Szostak
Institute of Microbiology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 20577-2104

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153

Weitere Informationen:

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: Medicine Mycoplasma Veterinary Vetmeduni ability bacteria gliding illness immune immune system motility proteins spread

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>