Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glycosylation: Mapping Uncharted Territory

21.09.2017

Glycosylation is the most abundant protein modification - over half of the proteins in our cells are ‘decorated’ with glycans. These sugar structures alter protein activities in all organisms – from bacteria to human - influencing fundamental processes, like protein folding and transport, cell migration, cell-cell interactions, and immune responses.

However, whereas massive inroads have been made into genomics, metabolomics, or protein and lipid research, glycosylation remains largely unexplored at the proteome scale. There are limited technologies for profiling the complex glycoproteome.


SugarQb is a platform that enables global insights into protein glycosylation and glycan modifications in biological systems.

Glycoproteins can differ not only by the number and location of glycosites, but also by the composition and structure of each glycan. Glycoproteomics is “one of the key frontiers of life sciences”, says study leader Josef Penninger, MD, IMBA Director.

The SugarQb Approach

To overcome the technical limitations that have stymied the field, Penninger’s group developed mass-spectrometry methods and algorithms that finally enable both the comprehensive identification of complex sugar structures and their mapping to sites within the corresponding proteins. Their novel comparative glycoproteomics platform is published in the current issue of Nature.

Termed SugarQb, for Sugar Quantitative Biology, their approach enables global insights into protein glycosylation and glycan modifications in biological systems. They applied this platform to two exciting proof-of-principle studies – an analysis of embryonic stem cell glycoproteomes, and the identification of glycoproteins required for ricin toxicity.

Glycosylated Stem Cell Factors

Using the novel SugarQb methodology, the authors established a first draft of the glycoproteomes of murine and human embryonic stem cells. Their results nearly doubled the number of all known glycoproteins in the entire literature.

They also uncovered multiple novel glycosylated proteins, including evolutionarily conserved as well as species-specific sugar modifications in murine and human stem cell pluripotency factors. Many of the glycosylated proteins they uncovered localize to the plasma membrane and are implicated in cell-to-cell signaling, cell interactions, as well as embryonic development.

Therapeutic Targets for Ricin

Ricin is a highly poisonous plant toxin and bioweapon. The smuggling of ricin raises concerns that it could be utilized by terrorists and terrorist organizations. Several US politicians - including President Barack Obama - received letters containing trace amounts of the poison. There are currently no antidotes for ricin exposure – so various groups, from pharmaceutical companies to the military, are interested in identifying therapies to treat or prevent ricin toxicity. Penninger’s group had just previously discovered that mutant cells defective for fucosylation, a type of glycosylation that adds fucose sugars, were resistant to ricin. However, the fucosylated targets supporting ricin toxicity were unknown.

Using SugarQb, the first authors Jasmin Taubenschmid, PhD student at IMBA, and proteome-researcher Johannes Stadlmann, could now obtain the glycoproteomes of these ricin-resistant cells: the glycoproteins that were altered in the mutant cells might play a role in their resistance.

Indeed, the team discovered six new players that orchestrate ricin toxicity. Loss of any one of these proteins rendered human cells ricin resistant, just like the cells defective for fucosylation. Their findings suggest that fucosylation of these new players is required for ricin sensitivity and provide many new therapeutic targets for drug discovery.

SugarQb is freely available to all scientists. “We hope that our platform will allow research teams all over the world to map this uncharted territory by identifying the sugar structures and their positions on the corresponding proteins,” says Johannes Stadlmann.

“Glycosylation plays a fundamental role in many diseases, including cancer –SugarQb will allow scientists to uncover new mechanisms in biology and treatment strategies for disease. It could also be used by clinicians to define aberrant glycoproteomic signatures as biomarkers of disease and to track responses to therapy,” adds Josef Penninger, last author and scientific director of IMBA.

Original paper: Stadlmann, Taubenschmid et al. „Comparative glycoproteomics of stem cells identifies new players in ricin toxicity”, Nature doi:10.1038/nature24015

About IMBA
IMBA - Institute of Molecular Biotechnology is one of the leading biomedical research institutes in Europe focusing on cutting-edge functional genomics and stem cell technologies. IMBA is located at the Vienna Biocenter, the vibrant cluster of universities, research institutes and biotech companies in Austria. IMBA is a basic research institute of the Austrian Academy of Sciences, the leading national sponsor of non-university academic research. www.imba.oeaw.ac.at

About the Vienna BioCenter
The Vienna BioCenter (VBC) is a leading life sciences location in Europe, offering an extraordinary combination of research, education and business on a single campus. About 1,700 employees, more than 1,300 students, 86 research groups, 17 biotech companies, and scientists from more than 40 nations create a highly dynamic environment. This research was part of the VBC PhD Programme. www.viennabiocenter.org

Mag. Evelyn Devuyst | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>