Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glycosaminoglycan-based hydrogels for a better treatment of chronic wounds

20.04.2017

Researchers from Dresden and Leipzig have jointly developed and tested a set of hydrogel wound dressings based on glycosaminoglycans. The hydrogels allow for the reduction of inflammatory reactions in ways that promise new treatment modalities for patients suffering from chronic cutaneous wounds.

Diabetes, a globally prevalent medical condition with more than 420 million affected patients, is often associated with chronic wounds whose treatment remains challenging.

Researchers at the Leibniz Institute of Polymer Research Dresden and the Department of Dermatology of the University of Leipzig have now jointly developed and tested a set of hydrogel wound dressings based on glycosaminoglycans, a class of naturally occurring carbohydrates.

The hydrogels allow for the reduction of inflammatory reactions in ways that promise new treatment modalities for patients suffering from chronic cutaneous wounds.

Collaborating within the Coordinated Research Center “Functional biomaterials for controlling healing processes in bone and skin” of the German Research Foundation, the interdisciplinary team explored a new approach to neutralize pro-inflammatory chemokines, signaling proteins that trigger the migration of immune cells into skin wounds.

Employing biomolecular interactions, the engineered hydrogels were shown to effectively bind and inactivate pro-inflammatory chemokines.

As reported in the current issue of Science Translational Medicine and highlighted with the cover image, the novel wound dressings accelerated cutaneous healing in a diseased animal model.

Further testing of the promising materials may pave the way for a potential future application in human patients. Beyond that, the underlying concept is expected to be similarly applicable in the treatment of other disorders associated with pathologically enhanced inflammatory reactions.

N. Lohmann, L. Schirmer, P. Atallah, E. Wandel, R. A. Ferrer, C. Werner, J. C. Simon, S. Franz, U. Freudenberg, Glycosaminoglycan-based hydrogels capture inflammatory chemokines and rescue defective wound healing in mice.
Sci. Transl. Med. 9, eaai9044 (2017).
DOI: 10.1126/scitranslmed.aai9044

Weitere Informationen:

http://stm.sciencemag.org/content/9/386/eaai9044

Contact:
Sandra Franz, sandra.franz@medizin.uni-leipzig.de, +49 341-9725880
Uwe Freudenberg, freudenberg@ipfdd.de, + 49 351-4658 408

Kerstin Wustrack | idw - Informationsdienst Wissenschaft
Further information:
http://www.ipfdd.de

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>