Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant cell reveals its secrets

21.12.2015

The genome of a giant amoeba provides clues to the early evolution of contemporary genes

The “slime mold” Physarum polycephalum is an amazing creature. As a giant single cell it is visible with the naked eye. The yellow, slimy mass of protoplasm, which crawls over rotting logs engulfing its prey, seems as unusual as an alien from outer space.


Giant cell of Physarum polycephalum.

Prof. Wolfgang Marwan

One specimen, which entered the Guinness Book of Records in 1989, covered a surface area of 5.5 square meters and weighed approximately 3 kgs--obviously deserving its title as the largest single cell ever grown.

This enigmatic organism has also attracted the interest of physicists, engineers, and artists who have taken inspiration from Physarum for developing computer algorithms, or directly used giant Physarum cells for steering robots, creating art projects, or electronic music.

However, for biologists Physarum has been a sleeping beauty during the past decades, because almost nothing was known about its genome and genes. This shortcoming has now changed fundamentally.

In an upcoming issue of Genome Biology and Evolution, an international group of scientists reports on the sequence of the 188 million nucleotides that make up the Physarum genome. These nucleotides encode 34,000 genes, over 50% more than the human genome.

Few other organisms have thus far posed such difficulties in deciphering their genome, which called for improvements of existing sequencing technologies, according to Pat Minx from the McDonnell Genome Institute at Washington University.

Comparison of its genes with those of other species proved what biologists already suspected. The so-called slime mold is in reality not a mold (fungus) but a giant amoeba, belonging to the amoebozoa group of organisms.

In light of our contemporary understanding of molecular evolution, Physarum appears to be an ancient relic with similarity to the last common ancestor of Amoebozoa, fungi and animals (including humans): a prototypical cell from the era of early eukaryote evolution with some molecular features that were thought to be specific for either animals or plants.

For a single-celled organism, Physarum has a very extensive system for signal detection and processing. This network of interacting genes and proteins picks up signals from the cell’s external environment and internal state, processes the information in sophisticated ways, and makes decisions that control the behavior and development of the organism. The molecular complexity of this signalling system is comparable to, and in some respects exceeds, that of higher animals, making Physarum a good model organism for the analysis of how living cells interact with their environment.

For example, Physarum has an unparalleled diversity in proteins to synthesize and detect the intracellular messenger molecules, cyclic AMP and cyclic GMP. Additionally, like animal cells but unlike plants or fungi, Physarum uses tyrosine-kinase signaling proteins for information processing.

Because a related amoebozoon, Acanthamoeba, also employs tyrosine kinase signaling, one may conclude that tyrosine kinases were present in the last common ancestor of Amoebozoa, fungi, and animals rather than having appeared only later, in the animal lineage, as was commonly believed until recently, says Pauline Schaap from Dundee University.

Tyrosine kinases are enzymes that play important roles in controlling normal cell fates, and their misbehaviors have been implicated in diseases such as cancer, arteriosclerosis and diabetes. Comparing human cells with their evolutionarily very distant cousin, Physarum, may ultimately help to understand core mechanisms of health and disease by abstracting what really matters for cellular regulation, says Gernot Glöckner from the University of Cologne, a main investigator in this project.

An increasing number of biologists believe that analyzing changes in hundreds or even thousands of components in individual cells over time will be necessary to obtain essential information on how cellular functions are controlled. In this light, the genome sequence of Physarum, a classical organism for single cell research, has come just in time.

Katharina Vorwerk | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-magdeburg.de/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>