Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Getting a grip on slippery cell membranes


In a paper published online by Nature Scientific Reports, biophysics teams at WPI and Penn describe how they modeled cells' ability to manipulate membranes made from oily lipids

Within each of our cells is a distribution system that uses molecular motors and filaments to move proteins, organelles, and other tiny bits of cargo along its inner framework, or cytoskeleton.

To study the forces generated by myosin-1 motors on oily membranes, researchers at Worcester Polytechnic Institute (WPI) and the University of Pennsylvania (Penn) strung a motor attached to an actin filament between two fluorescent beads, with the motor's tail resting on a sphere covered with lipids. The filament was moved side-to-side with the help of an optical trap. As the myosin-1 molecules stretched and slipped on the sphere, the researchers measured the forces applied to the sphere by the molecule.

Credit: Worcester Polytechnic Institute and University of Pennsylvania

To achieve this feat, the motors and filaments must tug on flexible membranes that surround the cargo packages, but these membranes, made of fatty molecules called lipids, are extremely slippery. Scientists have long wondered how the molecular transport machinery is able to maintain its grip.

The work is important because knowledge of the basic science of molecular motors and membrane mechanics can translate into a better understanding of cell and tissue development, wound healing, and the responses of the immune system--and how cancer cells can spread from a single tumor to other areas of the body.

... more about:
»Muscle »Polytechnic »cell membranes »proteins

Thanks to a collaborative research project at Worcester Polytechnic Institute (WPI) and the University of Pennsylvania (Penn), the answer is beginning to emerge. Led by Erkan Tüzel, PhD, associate professor of physics at WPI, and Michael Ostap, PhD, professor of physiology at the Pennsylvania Muscle Institute and Penn's Perelman School of Medicine, the team is using laboratory experiments and computational modeling to study the interactions between the motors (made from a protein called myosin-1), the filaments (made from the protein actin), and the membranes. Their findings are reported in the paper "Force Generation by Membrane-Associated Myosin-1" published online by Nature Scientific Reports.

"To maintain a grip, these myosin-1 molecules need to generate sufficient force against oily membranes," Tüzel said. "How they do that has not been clear. Now we are able to say, 'yes, the numbers make sense and the physics does work.'"

In addition to transporting cargo, cells perform a number of essential functions--from secreting proteins to dividing into two daughter cells--that require the precise manipulation of cellular membranes. The work is done by myosin motors attached to actin filaments, which must grip the membranes and pull against them. This work provides novel insights into how motors keep their grip.

Getting to the bottom of this mystery required the combined skills of Tüzel, a theoretical biophysicist who develops algorithms and computational models that simulate the behavior of complex systems, including living cells, and Ostap, an experimental biophysicist who studies the molecular motors and other structures that power cells. They began collaborating after meeting in 2014 at the Muscle and Molecular Motors Gordon Research Conference.

For the current study, Serapion Pyrpassopoulos, PhD, a researcher in Ostap's lab, strung myosin-1 molecules attached to an actin filament between two fluorescent beads. The tail of the myosin was placed on a sphere covered with lipids using techniques developed by Pyrpassopoulos.

The actin filament was moved side-to-side with the help of an optical trap. As the myosin-1 molecules stretched and slipped on the sphere, the researchers measured the forces applied to the sphere by the molecule. Tüzel and WPI graduate student Göker Arpag? took the data from those single-molecule experiments and developed a computational model that could be used to determine what it would take for myosin-1 molecules to effectively manipulate a membrane.

The model showed that a single myosin-1 molecule gripping a single lipid molecule in the membrane is not able to generate the force required to successfully tug on the membrane. In fact, the model predicts, it would take between 69 and 124 myosin-1 molecules, all attached to one actin filament and all working together, to do the job. The model also predicts that myosin-1 molecules will slip on the membrane's lipid surface at different rates. When some find an area that is easier to grip, others migrate there and hold on collectively, much like a tug-of-war team that bunches up on the rope where it gains a good foothold.

"We also saw that the slower moving myosins seem to help the faster slipping ones by giving them time to move to the area where it was easier to grip," Tüzel noted.

Tüzel and Ostap are continuing their collaboration, planning new experiments based on the predictions of the computer model. "These basic experiments and models are exciting because they provide us with the framework to start asking more physiologically relevant questions," Ostap added, "like what happens to myosin's force-generating properties when it attaches to its cellular cargo."

Media Contact

Michael Cohen


Michael Cohen | EurekAlert!

Further reports about: Muscle Polytechnic cell membranes proteins

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>