Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome Damage Tolerance Extends Lifespan

25.11.2014

The team of scientists led by Prof. Dr. Björn Schumacher at CECAD Cluster of Excellence at the University of Cologne has shown that a longevity assurance program in nematodes increases tolerance to genome damage. DNA damage accumulates with age and results in an aging-associated decrease in tissue function. Defects in DNA repair mechanisms can therefore lead to premature aging and early death of affected patients. The Cologne scientists’ findings open up new perspectives for the treatment of aging-associated diseases.

The genome in every cell is constantly under physical and chemical attack. These attacks can come from outside, such as UV radiation from sunlight, or from inside, like the toxic byproducts of our own metabolism.

DNA damage can interfere already with developmental growth and the invariant gradual accumulation of DNA damage drives the aging process. People born with defects in the DNA repair systems suffer from retarded body growth and succumb to premature aging already during childhood.


How does the body respond when DNA damage cannot be repaired or accumulates with age? Prof. Dr. Björn Schumacher at the CECAD Research Center: “We investigated nematodes with exactly the same genetic defects in DNA repair as patients who suffer from growth retardation and premature aging.

When the nematodes are unable to repair the damaged DNA, they activate a longevity assurance response.” The Cologne-based research team has published their influential results in the current issue of Nature Cell Biology on 2014, November 24.


The longevity assurance program is executed by a worm protein with the name “DAF-16”. DAF-16 normally halts the growth of young animals when food is scarce. This allows larvae to survive for extended periods of starvation. Growth resumes when a food source is found, so offspring can be produced in the nutritious environment. Schumacher’s team has now shown that DAF-16 also responds to DNA damage, though -- in contrast to the starvation program – it drives the young animals’ growth even when DNA damage persists.

A second protein, EGL-27, instructs DAF-16 to promote instead of halt growth. In adult animals DAF-16 allows tissues to retain their function despite persisting DNA damage. The DAF-16 longevity assurance program thus increases tolerance to accumulating DNA defects. In older worms though, DAF-16 no longer responds to DNA damage. The older animals lose their tolerance to DNA damage and with it tissue function as well.

The Cologne scientists hope these results will open up new therapeutic approaches that exploit the natural longevity assurance program to prevent aging-associated diseases triggered by accumulating genome damage with age. Children with inborn genetic disorders who suffer from the effects of DNA defects at an early age could also profit from these therapies.

The research group’s findings are a decisive step forward in realizing the vision of CECAD at the University of Cologne: to understand the molecular basis of aging-associated diseases as a foundation for deriving new therapeutic approaches.

Contact:
Prof. Dr. Björn Schumacher
CECAD Excellence Cluster at the University of Cologne
Telephone +49 221 478-84202
bjoern.schumacher@uni-koeln.de

Astrid Bergmeister MBA
Head CECAD PR & Marketing
Telephone + 49 (0) 221-478 84043
astrid.bergmeister@uk-koeln.de


Weitere Informationen:

http://www.cecad.uni-koeln.de

Astrid Bergmeister | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>