Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics of Wood Formation

20.04.2015

Researchers identify genetic regulatory networks that influence poplar wood formation, a key bioenergy plant.

The Science


Image courtesy of the Great Lakes Bioenergy Research Center via a Creative Commons License

To better understand the complex processes involved in wood formation, researchers have developed a new method to study genetic regulatory mechanisms in poplar, a potential bioenergy feedstock (shown here).

To begin to understand the complex genetic interactions that control poplar growth, a potential bioenergy crop, researchers developed a robust high-throughput pipeline for studying the hierarchy of genetic regulation of wood formation using tissue-specific single cells known as protoplasts.

The Impact

This approach will be particularly useful in studying complex processes in plant species that lack mutants and stable transformation systems. It also can be used to improve forest tree productivity with more precise genetic approaches.

Summary

Wood is an important renewable material for bioenergy and other industrial products, but its formation, a complex process regulated at many levels, is poorly understood. Such processes often involve interactions between regulatory genes known as transcription factors (TFs) and their direct DNA targets. These TF-DNA interactions constitute a regulatory hierarchy.

The new method for isolating protoplasts from the wood-forming stem differentiating xylem tissues of poplar was developed by researchers at North Carolina State University with funding from the U.S. Department of Energy Genomic Science program. The team used the method to study the expression of a specific poplar TF affecting wood formation.

By integrating this novel system with computational approaches, a hierarchical layer of genes was inferred that was functionally validated in the wood-forming stem differentiating xylem. The new approach aids understanding hierarchical gene regulatory networks directed by TFs in poplar and other plant species where mutants are not available.

Funding

This work was supported by the Office of Biological and Environmental Research within the U.S. Department of Energy’s Office of Science under grant DE-SC000691. Authors also acknowledge support of the North Carolina State University Jordan Family Distinguished Professor Endowment.

Publication

Y.C. Lin, W. Li, Y.H. Sun, S. Kumari, H. Wei, Q. Li, S. Tunlaya-Anukit, R.R. Sederoff, V.L. Chiang, “SND1 transcription factor–directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa.” Plant Cell 25, 4324-4341 (2013). [DOI: 10.1105/tpc.113.117697]

Kristin Manke | newswise

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>