Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics of Wood Formation

20.04.2015

Researchers identify genetic regulatory networks that influence poplar wood formation, a key bioenergy plant.

The Science


Image courtesy of the Great Lakes Bioenergy Research Center via a Creative Commons License

To better understand the complex processes involved in wood formation, researchers have developed a new method to study genetic regulatory mechanisms in poplar, a potential bioenergy feedstock (shown here).

To begin to understand the complex genetic interactions that control poplar growth, a potential bioenergy crop, researchers developed a robust high-throughput pipeline for studying the hierarchy of genetic regulation of wood formation using tissue-specific single cells known as protoplasts.

The Impact

This approach will be particularly useful in studying complex processes in plant species that lack mutants and stable transformation systems. It also can be used to improve forest tree productivity with more precise genetic approaches.

Summary

Wood is an important renewable material for bioenergy and other industrial products, but its formation, a complex process regulated at many levels, is poorly understood. Such processes often involve interactions between regulatory genes known as transcription factors (TFs) and their direct DNA targets. These TF-DNA interactions constitute a regulatory hierarchy.

The new method for isolating protoplasts from the wood-forming stem differentiating xylem tissues of poplar was developed by researchers at North Carolina State University with funding from the U.S. Department of Energy Genomic Science program. The team used the method to study the expression of a specific poplar TF affecting wood formation.

By integrating this novel system with computational approaches, a hierarchical layer of genes was inferred that was functionally validated in the wood-forming stem differentiating xylem. The new approach aids understanding hierarchical gene regulatory networks directed by TFs in poplar and other plant species where mutants are not available.

Funding

This work was supported by the Office of Biological and Environmental Research within the U.S. Department of Energy’s Office of Science under grant DE-SC000691. Authors also acknowledge support of the North Carolina State University Jordan Family Distinguished Professor Endowment.

Publication

Y.C. Lin, W. Li, Y.H. Sun, S. Kumari, H. Wei, Q. Li, S. Tunlaya-Anukit, R.R. Sederoff, V.L. Chiang, “SND1 transcription factor–directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa.” Plant Cell 25, 4324-4341 (2013). [DOI: 10.1105/tpc.113.117697]

Kristin Manke | newswise

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>