Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Regulation of the Thymus Function Identified

23.08.2016

Researchers at the universities of Basel and Oxford have for the first time identified all genes regulated by the protein Foxn1. The results show that Foxn1 not only plays a crucial role in development of the thymus in the embryo, but it also regulates vital functions in the developed, postnatal organ. The decryption of the protein’s functions is important in the understanding and treatment of autoimmune diseases, vaccination responses in old age and defense against tumor cells. The study was published in the journal Nature Immunology.

Like all vertebrate animals, humans use T cells in immune defense in order to protect the body against infections and malignant cells. Immune cells mature in the thymus, an organ located between the sternum and heart, during the embryonic stage, but they reach full functionality only when they interact with thymus epithelial cells – the teachers of the T cell, so to speak. The thymus begins to age from the second year of life.


A single thymic epithelial cell (red) in contact with developing T cells (white).

Department of Biomedicine, University of Basel

More than 20 years ago, researchers discovered that the protein Foxn1 plays an important role in the development and differentiation of thymic epithelial cells. But it remained unclear which target genes controlled by Foxn1 were responsible for the formation and functions of the specialized epithelial cells. It was also unclear what Foxn1 actually did after development of the thymus in the embryo.

Healthy adults do not directly depend on the work of the thymus; however, the organ’s function becomes important again once the body requires new T cells – for example, after chemotherapy or a bone marrow transplant. To prevent the patient from remaining highly immune-deficient, thymic epithelial cells have to instruct the generation of new T cells.

Genome map of the regulator Foxn1

Researchers at the University of Basel, the University Children’s Hospital Basel and the University of Oxford have now succeeded in identifying in thymic epithelial cells the DNA sequence bound by the protein. The team, led by Professor Georg A. Holländer, was able to create a genome-wide map that lists all the DNA segments regulated by Foxn1. It emerged that Foxn1 controls almost all functions of the thymus, in whole or in part. “The protein is not only involved in the development of the organ, it also remains essential for its function throughout a person's life,” says the immunologist.

The research results provide important insights into the regulatory functions of thymic epithelial cells and could contribute to the development of new strategies for maintaining the thymus function in old age. “Now that we know exactly what Foxn1 does, we can think about how we can keep the thymus functioning in old age to reduce the risk of autoimmune disease and increased susceptibility to infections and tumors,” says Holländer.

Original article

Saulius Žuklys, Adam Handel, Saule Zhanybekova, Fatima Govani, Marcel Keller, Stefano Maio, Carlos E. Mayer, Hong Ying Teh, Katrin Hafen, Giuseppe Gallone, Thomas Barthlott, Chris P. Ponting and Georg A. Holländer
Foxn1 regulates key target genes essential for T cell development in postnatal thymic epithelial cells
Nature Immunology (2016), doi: 10.1038/ni.3537

Further information

Georg A. Holländer, University of Basel, Department of Biomedicine/University Children’s Hospital Basel, Tel. +41 61 270 50 69, email: georg-a.hollaender@unibas.ch
Saulius Zuklys, University of Basel, Department of Biomedicine/University Children’s Hospital Basel, Tel. +41 61 207 50 68, email: saulius.zuklys@unibas.ch

Weitere Informationen:

https://www.unibas.ch/en/News-Events/News/Uni-Research/Genetic-Regulation-of-the...

Olivia Poisson | Universität Basel

Further reports about: DNA DNA sequence Foxn1 T cells Thymus bone marrow bone marrow transplant epithelial cells

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>