Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Diversity of Enzymes Alters Metabolic Individuality

05.09.2016

Scientists from Tohoku University's Tohoku Medical Megabank Organization (ToMMo) have published research about genetic diversity and metabolome in Scientific Reports.

"We discovered genetic variants affecting enzymatic activities in healthy people," said Dr. Seizo Koshiba. "Our study shows that genetic polymorphisms, structural location of mutation and effect for phenotype correlate with each other in the human population. This implies that metabolic individuality and susceptibility for diseases are possibly resulted from the moderate variants and much more deleterious, but rare, variants."


The metabolites in plasma were analyzed by NMR spectroscopy.

Copyright : Tohoku University

In their analyses, researchers found the following results:

- The relationship between structural variants of enzymes and metabolic phenotypes in the human population was surveyed in the association study of metabolite concentrations with whole genome sequence analysis data.

- Five associations between metabolites and gene variants were identified. Four of the gene variants are known to be related to metabolic diseases. The residues substituted by these variants are located in peripheral regions of the catalytic sites or related regulatory domains of enzymes.

- Two people have larger changes of metabolite levels of phenylalanine. They had rare gene variants, which substitute residues located near the catalytic site.

- These data demonstrate that variant frequency, structural location and effect for phenotype correlate with each other in the human population.

ToMMo will study environmental and genetic influence on individual differences of proteomics and metabolomics. ToMMo aims to discover useful biomarkers for disease prevention and early diagnosis through the identification and quantification of metabolites in blood. Such studies can contribute to the advancement of personalized prevention and treatment of diseases, as well as the identification of disease mechanisms and development of new therapeutics.

These findings are based on the analysis of blood samples from 512 healthy people who participated in the Tohoku Medical Megabank Project Community-Based Cohort Study and the Birth and Three-Generation Cohort Study.

Some of the data can be found on ToMMo's website: Japanese Multi Omics Reference Panel (jMorp) (please see the link below).

Contact:
Fuji Nagami
Tohoku Medical Megabank Organization, Tohoku University
Email: f-nagami@med.tohoku.ac.jp
  http://www.megabank.tohoku.ac.jp/english/

Associated links

Journal information

Authors: Seizo Koshiba, Ikuko Motoike, Kaname Kojima, Takanori Hasegawa, Matsuyuki Shirota, Tomo Saito, Daisuke Saigusa, Inaho Danjoh, Fumiki Katsuoka, Soichi Ogishima, Yosuke Kawai, Yumi Yamaguchi-Kabata, Miyuki Sakurai, Sachiko Hirano, Junichi Nakata, Hozumi Motohashi, Atsushi Hozawa, Shinichi Kuriyama, Naoko Minegishi, Masao Nagasaki, Takako Takai-Igarashi, Nobuo Fuse, Hideyasu Kiyomoto, Junichi Sugawara, Yoichi Suzuki, Shigeo Kure, Nobuo Yaegashi, Osamu Tanabe, Kengo Kinoshita, Jun Yasuda and Masayuki Yamamoto
Title: The structural origin of metabolic quantitative diversity
Journal: Scientific Reports
DOI: 10.1038/srep31463

Ngaroma Riley | Research SEA

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>