Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene variation promotes uncontrolled cell division

18.12.2015

Mom’s eyes and dad’s tumor? Cancer is due to genetic defects, some of which can be hereditary. The gene variant rs351855, for example, occurs in one in two cancer patients. A team headed by Axel Ullrich from the Max Planck Institute of Biochemistry in Martinsried identified the gene variant a decade ago. Now, they succeeded for the first time in showing that the variation exposes an otherwise hidden binding site on the FGFR4 receptor. There, growth factor STAT3, which promotes cancer, binds to the exposed site. The STAT3 signaling cascade can be efficiently blocked. This could provide a promising therapeutic approach for many cancer patients. The paper was published in Nature.

A human is a human: we are all 99.9% genetically identical. However, the remaining 0.1% accounts for the unique characteristics of each individual, whether he or she is tall or short, allergic or susceptible to autoimmune diseases. Those three million or so of the 3.2 billion genetic building blocks in our genome may contain the answer to the question of whether we will develop cancer in the course of our lives.


About 30% of the world population harbors the gene variation rs351855-A in their genomes. In the event of cancer, the encoded receptor FGFR4 p.G388R contributes to a faster disease progression.

Vijay K. Ulaganathan, Monika Krause © MPI of Biochemistry

Cancer is a genetic disease, i.e. it is due to defects in the genetic material DNA. Such harmful mutations can be acquired in the course of life, as a result of exposure of skin cells to intense sunlight, for example, or toxins from cigarette smoke in the lungs. However, some defects are passed on as inheritable genetic variants to offspring, who then carry those defects in every cell of their body.

One such cancer-associated germline mutation is called rs351855. It was discovered in patients with breast cancer by a team headed by Axel Ullrich, Leader of the Molecular Biology Research Group, a decade ago. This particular genetic variant can support the growth of malignant tumors in bones, the colon, the prostate, the skin, the lungs and the head and neck, as well as to the growth of soft-tissue sarcomas and non-Hodgkin’s lymphoma.

About half of all cancer patients carry this gene variation. It is associated with a poor prognosis. The germline mutation rs351855 accounts for aggressive and rapidly growing tumors that are resistant to treatment. An effective treatment needs to be tailored to match the mutation and its biological effects.

Subsequent studies have shown that rs351855 results in the replacement of a single protein building unit in a receptor for growth factors. Fibroblast growth factor receptor 4 (FGFR4) is then expressed in the form of the FGFR4 p.Arg388 variant. Scientists around the world are trying to find out why only this particular genetic variant, out of more than 400 known ones of FGFR4, has such a high impact. Moreover, the genetic mutation occurs very frequently, around one-third of the population carry it in the genome. It is not known, whether this variation itself increases the general risk of cancer.

Ullrich and his associates have now demonstrated for the first time that the defect results in a previously unknown biological function in living cells. They showed in an animal model that the defect exposes a normally hidden binding site on the receptor molecule near the inner cell membrane. Growth factor STAT3, which promotes cell division and tumor growth, is then able to dock to the receptor.

Cells do not usually proliferate out of control, because they only divide in response to a signal that they receive from the outside. This molecular message is picked up by receptors such as FGFR4 and is then relayed through the cell membrane into the interior of the cell, thus setting in motion a cascade of molecular interactions with molecules such as STAT3 that culminates in the cell nucleus, where genes are activated that direct the actual process of cell division.

This hierarchical process is often undermined in cancer. The cells divide without an external command. That is the case, for example, when STAT3 is activated by abnormal binding to the defective receptor. Such interaction of STAT3 close to the inner cell membrane was previously unknown and unexpected. “I wasn’t really convinced until various experimental approaches produced matching results,” says Vijay K. Ulaganathan, lead author of the study.

The scientists have also shown that the growth of cells carrying this gene variant can be inhibited by blocking STAT3. “For the first time, there may be very good prospects of an effective treatment option for cancer patients with this respective germline mutation,” says Ullrich. Others may also be affected: Other germline mutations also exist that recruit STAT3 to the inner cell membrane and may also lead to cancer.

The work is an important step towards personalized medicine, which takes into account the individual genetic makeup of cancer patients. “As we have shown here, we need to focus on germline mutations as well,” says Ullrich. “Research should not be limited to environmentally-related genetic defects.” Ullrich is a pioneer in personalized medicine. Among other things, he developed together with colleagues Herceptin, a drug that is tailor-made for treating breast cancer associated with specific mutations.

Original publication:
V. K. Ulaganathan, B. Sperl, U. R. Rapp, Axel Ullrich: Germline variant FGFR4 p.G388R exposes membrane-proximal STAT3 binding site, Nature, December 2015
DOI: 10.1038/nature16449

Contact:
Prof. Dr. Axel Ullrich
Department of Molecular Biology
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: ullrich@biochem.mpg.de
www.biochem.mpg.de/ullrich

Dr. Vijay K. Ulaganathan
Department of Molecular Biology
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Germany
E-Mail: ulaganat@biochem.mpg.de

Dr. Christiane Menzfeld
Public Relations
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Germany
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de
www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de - homepage max planck institute of biochemistry
http://www.biochem.mpg.de/ullrich - homepage Axel Ullrich

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>