Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene controlling plant cell growth discovered

07.09.2009
Understanding how plant cells grow and develop is essential to achieving increases in the size and yield of crops, one of the fundamental goals of plant science research. While mechanisms governing plant cell growth are known to exist, the genetic origins of such mechanisms have remained unclear.

With their latest discovery, published in the journal The Plant Cell, research teams at the RIKEN Plant Science Center have marked a major step toward clarifying these origins.

The research teams studied mutants of the Arabidopsi leaf trichome, a specialized epidermal cell that forms a small hair-like outgrowth on plants. Unlike earlier studies, the teams focused on later stages in the trichome developmental process, which are accompanied by rapid cell growth and branching.

In their experiments, the researchers discovered that by disrupting the gene encoding a novel protein, GTL1, trichome cells could be induced to grow to twice their normal size, indicating that GTL1 represses cell growth. By measuring the amount of nuclear DNA in young trichomes, they further determined that GTL1, unlike previously-identified growth regulators, functions to suppress DNA reduplication and cell growth entirely at the very last stage of development.

GTL1 is the first transcription factor to have been found to actively down-regulate the growth of plant cells. Its discovery constitutes a key step toward understanding the mechanisms of plant cell growth, offering new directions for research and promising further advances in agricultural production.

For more information, please contact:

Dr. Keiko Sugimoto
Cell Function Research Unit
RIKEN Plant Science Center
Tel: +81-(0) 45-503-9575 / fax: +81-(0) 45-503-9591
Ms. Saeko Okada (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-467-9443
Email: koho@riken.jp

Saeko Okada | Research asia research news
Further information:
http://www.riken.jp

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>