Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geckos are sticky without effort

04.12.2014

UC Riverside biologists show death has no impact on strength geckos use to adhere to surfaces

Geckos, found in places with warm climates, have fascinated people for hundreds of years. Scientists have been especially intrigued by these lizards, and have studied a variety of features such as the adhesive toe pads on the underside of gecko feet with which geckos attach to surfaces with remarkable strength.


This is a photo of a tokay gecko clinging to a smooth surface.

Credit: William Stewart


Photo shows the underside of the gecko's foot. Underneath the toes are 'setae,' millions of very fine hair-like structures, which provide increased surface area and close contact between the foot and the surface on which it rests. The setae are curved inward, toward the center of the foot. When the gecko pulls back a toe, the setae get straightened.

Credit: Emily Kane

One unanswered question that has captivated researchers is: Is the strength of this adhesion determined by the gecko or is it somehow intrinsic to the adhesive system? In other words, is this adhesion a result of the entire animal initiating it? Or is the adhesion fundamentally "passive," its strength resulting from the way just the toe pads work?

Biologists at the University of California, Riverside have now conducted experiments in the lab on live and dead geckos to determine the answer. Their experiments show, for the first time, that dead geckos can adhere with the exact same strength as living geckos.

Study results, appearing online Dec. 3 in Biology Letters, could have applications in the field of robotics.

"With regards to geckos, being sticky doesn't require effort," said Timothy E. Higham, an assistant professor of biology, who conducted the research alongside William J. Stewart, a postdoctoral researcher inhis lab. "We found that dead geckos maintain the ability to adhere with the same force as living animals, eliminating the idea that strong adhesion requires active control. Death affects neither the motion nor the posture of clinging gecko feet. We found no difference in the adhesive force or the motion of clinging digits between our before- and after-death experiments."

Higham explained that there have been suggestions in the literature for many years that gecko adhesion at the organismal, or whole-animal, level (where the intact animal initiates adhesion) requires an active component such as muscle activity to push the foot and toes onto the surface in order to enhance adhesion. This has, however, never been tested.

Higham and Stewart took on the challenge and tested the hypothesis. The researchers used a novel device involving a controlled pulling system. This device applies repeatable and steady-increasing pulling forces to the gecko foot in shear. Specifically, the device measures clings by pulling a gecko foot in a highly controlled manner along a vertical acrylic sheet while simultaneously recording shear adhesion with video cameras.

The experiments showed that the adhesive force or motion of a gecko foot when pulled along a vertical surface was similarly high and variable when the gecko was alive and immediately - within 30 minutes - after death.

Geckos can climb a variety of surfaces, including smooth glass. Their sticky toes have inspired climbing devices such as Spider-Man gloves. The toe pads on the underside of gecko feet contain tiny hair-like structures called setae. The setae adhere to contacted surfaces through frictional forces as well as forces between molecules, called van der Waals forces. These tiny structures are so strong that the setae on a single foot can support 20 times the gecko's body weight.

The controlled experiments the researchers performed are the first to show that dead animals maintain the ability to adhere with the same force as living animals. The results refute the notion that actions by a living gecko, such as muscle recruitment or neural activity, are required for gecko feet to generate forces.

"The idea that adhesion can be entirely passive could apply to many different kinds of adhesion," Higham said. "This is clearly a cost-effective way of remaining stationary in a habitat. For example, geckos could perch on a smooth vertical surface and sleep for the night - or day - without using any energy."

The new work suggests that the "active" component of gecko adhesion is actually a reduction of adhesion force when the gecko "hyperextends" its digits - that is, lifts them off the ground by curling up only the tips of the digits while the rest of the foot remains on the surface.

"We found that the dead animals were more likely to experience damage to their adhesive system, which suggests that the active control may actually prevent injury," Stewart aid. "In other words, when the forces become too high, the gecko likely releases the system using its muscles."

The research was supported by a grant to Higham from the National Science Foundation. Stewart, the first author of the research paper, is now a postdoctoral scholar at the Whitney Laboratory for Marine Bioscience, the University of Florida.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!

Further reports about: Riverside activity adhesion animals gecko feet geckos variety

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>