Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gallbladder cancer: Pharmacist finds protein that drives tumour growth – new therapeutic approach

25.10.2017

Patients with gallbladder cancer often show few or no symptoms for long periods of time. As a result, the tumours are only detected at a late stage of the disease when treatment is often no longer possible. Working in collaboration with pathologists at the University of Magdeburg, Sonja M. Kessler, a research pharmacist in the group led by Professor Alexandra K. Kiemer at Saarland University, has identified a new pathway that may allow improved prognosis and treatment of the disease. Kessler has discovered a protein that is linked with tumour growth and that functions as a prognostic marker, thus providing an indication of how the cancer may progress.

The results have been published in the specialist journal ‘Oncotarget’. DOI: 10.18632/oncotarget.21116

The three proteins usually targeted by pharmacist Sonja M. Kessler in her research work are known to play an important role in embryos in the womb. These proteins help to ensure the rapid growth and development of the unborn child. After birth, however, these proteins typically play no further role.


Research pharmacist Sonja M. Kessler from Saarland University has succeeded in linking a protein group to gallbladder cancer.

Ehrlich

‘All of these proteins are switched off after birth and they are no longer copied from the child’s genetic blueprint,’ explains licenced pharmacist Dr. Sonja M. Kessler, who is carrying out research at Saarland University in the group run by Professor Alexandra K. Kiemer for her Habilitation – the advanced research degree that entitles the holder to teach at professorial level within the German higher education system. However, it turns out that this family of proteins with the unremarkable names IMP1 to 3 can be switched on again. And if that happens, they can cause a lot of harm. Of the three proteins, IMP2 is particularly hostile: ‘Because IMP2 promotes cell division and proliferation, it also drives the growth of tumours,’ explains Kessler.

Research pharmacist Kessler has now succeeded in linking the protein group to gallbladder cancer. ‘We were able to identify the proteins in a large number of tissue samples from gallbladder patients. We were also able to show that the tumour grows faster when the cells contain larger amounts of the IMP2 protein. And in those cases patient prognosis is poorer,’ says Kessler.

... more about:
»Biology »gallbladder »proteins »tumour »tumour growth

This result from a basic research programme may in future help to improve gallbladder treatment. ‘Up until now there have been very few prognostic markers for this tumour,’ says Sonja Kessler. Prognostic markers are substances in blood or tissue samples that indicate that a malignant cancer is likely to have a poor outcome for the patient.

Currently available treatment options can therefore be tailored more closely to the patient’s needs, which may help to improve clinical outcomes. IMP2 represents an important and potentially useful prognostic marker for gallbladder cancer. The results of Kessler’s research may also provide the basis for new effective drug treatments. Once the participating protein has been identified, research can be undertaken to influence, slow or even completely prevent the harmful processes that are set in motion by the protein.

Kessler’s research was conducted in collaboration with Johannes Haybaeck, Professor of Pathology at the University of Magdeburg, who has built up the world’s largest collection of almost 500 tissue samples from gallbladder cancer patients.

With the help of the tissue bank, Dr. Kessler was able to identify the protein IMP2 as a completely new player in gallbladder cancer. Experimentally, the IMP proteins in the tissue samples were made visible and analysed with the help of marked antibodies.

Press photographs are available at http://www.uni-saarland.de/pressefotos and can be used at no charge.

Contact: Dr. Sonja M. Kessler (Department of Pharmaceutical Biology):
Tel.: +49 (0)681 302-57314; E-mail: s.kessler@mx.uni-saarland.de
Prof. Dr. Alexandra K. Kiemer (Department of Pharmaceutical Biology)
Tel.: +49 (0)681 302-57301; E-mail: pharm.bio.kiemer@mx.uni-saarland.de

Note for radio journalists: Studio-quality telephone interviews can be conducted using broadcast audio IP codec technology (IP direct dial or via the ARD node 106813020001). Interview requests should be addressed to the university’s Press and Public Relations Office (+49 (0)681 302-64091 or -2601).

Weitere Informationen:

http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=a... - "IMP2/IGF2BP2 expression, but not IMP1 and IMP3, predicts poor outcome in patients and high tumor growth rate in xenograft models of gallbladder cancer" DOI: 10.18632/oncotarget.21116

Claudia Ehrlich | Universität des Saarlandes

Further reports about: Biology gallbladder proteins tumour tumour growth

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>