Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fusion protein controls design of photosynthesis platform

13.05.2015

Collaborative project uncovers the role of a protein in the formation and maintenance of the inner membrane structures of photosynthetic systems

Chloroplasts are the solar cells of plants and green algae. In a process called photosynthesis, light energy is used to produce biochemical energy and the oxygen we breathe. Thus, photosynthesis is one of the most important biological processes on the planet.


An IM30 ring docks with internal membranes. In the background is part of an image of a blue-green alga prepared using an electron microscope. A 3D model of the IM30 ring can be seen in the foreground. The images are not to scale.

Source: Dirk Schneider and Jürgen Markl

A central part of photosynthesis takes place in a specialized structure within chloroplasts, the thylakoid membrane system. Despite its apparent important function, until now it was not clear how this specialized internal membrane system is actually formed.

In a collaborative project, researchers at Johannes Gutenberg University Mainz (JGU) in Germany have now identified how this membrane is generated. According to their findings, a protein called IM30 plays a major role by triggering the fusion of internal membranes. The study elucidating the role of IM30 involved biologists, chemists, biochemists, and biophysicists at Mainz University and the Max Planck Institute for Polymer Research. Their results have recently been published in the journal Nature Communications.

Chloroplasts are organelles found in higher plants and green algae. They contain an internal membrane system, so-called thylakoid membranes, where the key processes of photosynthesis take place. "A detailed understanding of photosynthesis and the associated molecular processes is essential to properly comprehend life on our planet," emphasized Professor Dirk Schneider of the Institute of Pharmaceutical Sciences and Biochemistry at JGU, who coordinated the study.

"Despite the significance of the process, we know almost nothing about how these special membranes are formed and maintained." It had not previously been possible to identify a single fusion-mediating protein in photosynthetic cells, even though it was perfectly clear that such proteins have to be involved in the development of thylakoid membranes.

With this in mind, the Mainz-based research team isolated and investigated the protein IM30 from a blue-green alga, which might be classified as a "free-living chloroplast." IM30 – the "IM" stands for "internal membrane" while 30 is its atomic mass (30 kilodaltons) – was first described in the mid-1990s and it was demonstrated that it binds to internal membranes.

Thanks to the combined expertise of the teams headed by Professor Dirk Schneider, Professor Jürgen Markl of the JGU Institute of Zoology, and Professor Tobias Weidner of the Max Planck Institute for Polymer Research it has now emerged that IM30 forms a ring structure that specifically interacts with phospholipids of the membranes.

"This binding alters the membrane structure and under certain conditions can lead to membrane fusion," explained Schneider. In absence of IM30, thylakoid membranes are noticeably deteriorated, which can subsequently lead to loss of cell viability. The IM30 fusion protein provides a starting point for future research, unraveling new types of membrane fusion mechanisms in chloroplasts and blue-green algae.

The interdisciplinary research project was primarily undertaken by doctoral candidates at the Max Planck Graduate Center (MPGC). The MPGC was founded in June 2009 to support joint projects and shared doctorates at Johannes Gutenberg University Mainz and the Max Planck Institutes for Polymer Research and for Chemistry, both of which are based in Mainz.

Publication:
Raoul Hennig et al.
IM30 triggers membrane fusion in cyanobacteria and chloroplasts
Nature Communications, 8. Mai 2015
DOI: 10.1038/ncomms8018

Further information:
Professor Dr. Dirk Schneider
Institute of Pharmaceutical Sciences and Biochemistry – Therapeutic Life Sciences
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-25833
fax +49 6131 39-25348
e-mail: dirk.schneider@uni-mainz.de
http://www.bio.chemie.uni-mainz.de/46.php

Weitere Informationen:

http://www.uni-mainz.de/presse/18298_ENG_HTML.php - press release ;
http://www.bio.chemie.uni-mainz.de/46.php – Prof. Dirk Schneider ;
http://www.bio.uni-mainz.de/zoo/312_DEU_HTML.php – Prof. Jürgen Markl ;
http://www.mpip-mainz.mpg.de/~weidner – Prof. Tobias Weidner ;
http://www.nature.com/naturecommunications – Nature Communications

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>