Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungus attacks new type of grain thanks to an evolutionary trick

12.01.2016

For the past few years, mildew has been able to infect triticale grain, which up to then had been resistant to this fungal disease. So how was the pathogen able to spread to a different host plant? Researchers from the University of Zurich have shown that the new pathogen is a genetic mix of existing mildew forms.

Triticale is an artificial grain type stemming from a cross between wheat and rye. Since the 1960s, triticale has been cultivated in many places as a feed grain and had proved very resistant to mildew attack. This fungal pathogen causes huge losses in cereal production.


Researchers collected samples from infected grain fields all over Europe.

Image: UZH

In the case of wheat, for example, the fungus can reduce the harvest by up to 45%. But triticale fields were infected for the first time in 2001, and mildew is now being reported in many triticale growing regions in Europe.

Comparison of the mildew genome confirms: The new form is a hybrid

Researchers from the University of Zurich have now examined how the mildew managed to spread to triticale. To do this, they collected samples from infected grain fields all over Europe and examined the genetic information of different forms of mildew.

The genetic material (genome) of the pathogens that attack triticale, rye and wheat were then compared using bioinformatics. The comparisons showed that the new triticale fungus is a hybrid of the variants specialized in wheat and rye: 12.5% of the genome is identical to DNA sequences from the form specialized in rye, while 87.5% stems from the form specialized in wheat.

Evolution of the pathogen reflects the development of the host plant

This means that a hybrid from two mildew variants specialized in two different host plants can infect the cross between those two host plants. The study thus shows the manner in which mildew adapts to new host plants in a co-evolutionary way and can break down their resistance. The study also reveals that this recent evolutionary event was not a one-off occurrence.

Around 10,000 years ago, mildew overcame the resistance of bread wheat, which was relatively new at the time, in the same way. “These results are of major significance for treating and preventing plant diseases. The more we know about the evolutionary mechanisms of mildew, the better we can keep new cultivated plants resistant to the pathogens”, explains Thomas Wicker from the Institute of Plant Biology at the University of Zurich.

Literature:
Fabrizio Menardo, Coraline R Praz, Stefan Wyder, Roi Ben-David, Salim Bourras, Hiromi Matsumae, Kaitlin E McNally, Francis Parlange, Andrea Riba, Stefan Roffler, Luisa K Schaefer, Kentaro K Shimizu, Luca Valenti, Helen Zbinden, Thomas Wicker & Beat Keller. Hybridization of powdery mildew strains gives raise to pathogens on novel agricultural crop species. Nature Genetics, 11 January 2016.
Doi: 10.1038/ng.3485.

University Research Priority Program “Evolution in action”
This research project was carried out as part of the University Research Priority Program (URPP) “Evolution in action”. The University Research Priority Program “Evolution in action” examines evolutionary mechanisms using state-of-the-art methods from genomics and bioinformatics. Researchers from eight institutes and three faculties at the University of Zurich are involved in the projects of the URPP “Evolution in action”.

Weitere Informationen:

http://www.mediadesk.uzh.ch/articles/2015/pilz-befaellt-neue-getreideart-dank-ev...

Melanie Nyfeler | Universität Zürich

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>