Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungus attacks new type of grain thanks to an evolutionary trick

12.01.2016

For the past few years, mildew has been able to infect triticale grain, which up to then had been resistant to this fungal disease. So how was the pathogen able to spread to a different host plant? Researchers from the University of Zurich have shown that the new pathogen is a genetic mix of existing mildew forms.

Triticale is an artificial grain type stemming from a cross between wheat and rye. Since the 1960s, triticale has been cultivated in many places as a feed grain and had proved very resistant to mildew attack. This fungal pathogen causes huge losses in cereal production.


Researchers collected samples from infected grain fields all over Europe.

Image: UZH

In the case of wheat, for example, the fungus can reduce the harvest by up to 45%. But triticale fields were infected for the first time in 2001, and mildew is now being reported in many triticale growing regions in Europe.

Comparison of the mildew genome confirms: The new form is a hybrid

Researchers from the University of Zurich have now examined how the mildew managed to spread to triticale. To do this, they collected samples from infected grain fields all over Europe and examined the genetic information of different forms of mildew.

The genetic material (genome) of the pathogens that attack triticale, rye and wheat were then compared using bioinformatics. The comparisons showed that the new triticale fungus is a hybrid of the variants specialized in wheat and rye: 12.5% of the genome is identical to DNA sequences from the form specialized in rye, while 87.5% stems from the form specialized in wheat.

Evolution of the pathogen reflects the development of the host plant

This means that a hybrid from two mildew variants specialized in two different host plants can infect the cross between those two host plants. The study thus shows the manner in which mildew adapts to new host plants in a co-evolutionary way and can break down their resistance. The study also reveals that this recent evolutionary event was not a one-off occurrence.

Around 10,000 years ago, mildew overcame the resistance of bread wheat, which was relatively new at the time, in the same way. “These results are of major significance for treating and preventing plant diseases. The more we know about the evolutionary mechanisms of mildew, the better we can keep new cultivated plants resistant to the pathogens”, explains Thomas Wicker from the Institute of Plant Biology at the University of Zurich.

Literature:
Fabrizio Menardo, Coraline R Praz, Stefan Wyder, Roi Ben-David, Salim Bourras, Hiromi Matsumae, Kaitlin E McNally, Francis Parlange, Andrea Riba, Stefan Roffler, Luisa K Schaefer, Kentaro K Shimizu, Luca Valenti, Helen Zbinden, Thomas Wicker & Beat Keller. Hybridization of powdery mildew strains gives raise to pathogens on novel agricultural crop species. Nature Genetics, 11 January 2016.
Doi: 10.1038/ng.3485.

University Research Priority Program “Evolution in action”
This research project was carried out as part of the University Research Priority Program (URPP) “Evolution in action”. The University Research Priority Program “Evolution in action” examines evolutionary mechanisms using state-of-the-art methods from genomics and bioinformatics. Researchers from eight institutes and three faculties at the University of Zurich are involved in the projects of the URPP “Evolution in action”.

Weitere Informationen:

http://www.mediadesk.uzh.ch/articles/2015/pilz-befaellt-neue-getreideart-dank-ev...

Melanie Nyfeler | Universität Zürich

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>