Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungus attacks new type of grain thanks to an evolutionary trick

12.01.2016

For the past few years, mildew has been able to infect triticale grain, which up to then had been resistant to this fungal disease. So how was the pathogen able to spread to a different host plant? Researchers from the University of Zurich have shown that the new pathogen is a genetic mix of existing mildew forms.

Triticale is an artificial grain type stemming from a cross between wheat and rye. Since the 1960s, triticale has been cultivated in many places as a feed grain and had proved very resistant to mildew attack. This fungal pathogen causes huge losses in cereal production.


Researchers collected samples from infected grain fields all over Europe.

Image: UZH

In the case of wheat, for example, the fungus can reduce the harvest by up to 45%. But triticale fields were infected for the first time in 2001, and mildew is now being reported in many triticale growing regions in Europe.

Comparison of the mildew genome confirms: The new form is a hybrid

Researchers from the University of Zurich have now examined how the mildew managed to spread to triticale. To do this, they collected samples from infected grain fields all over Europe and examined the genetic information of different forms of mildew.

The genetic material (genome) of the pathogens that attack triticale, rye and wheat were then compared using bioinformatics. The comparisons showed that the new triticale fungus is a hybrid of the variants specialized in wheat and rye: 12.5% of the genome is identical to DNA sequences from the form specialized in rye, while 87.5% stems from the form specialized in wheat.

Evolution of the pathogen reflects the development of the host plant

This means that a hybrid from two mildew variants specialized in two different host plants can infect the cross between those two host plants. The study thus shows the manner in which mildew adapts to new host plants in a co-evolutionary way and can break down their resistance. The study also reveals that this recent evolutionary event was not a one-off occurrence.

Around 10,000 years ago, mildew overcame the resistance of bread wheat, which was relatively new at the time, in the same way. “These results are of major significance for treating and preventing plant diseases. The more we know about the evolutionary mechanisms of mildew, the better we can keep new cultivated plants resistant to the pathogens”, explains Thomas Wicker from the Institute of Plant Biology at the University of Zurich.

Literature:
Fabrizio Menardo, Coraline R Praz, Stefan Wyder, Roi Ben-David, Salim Bourras, Hiromi Matsumae, Kaitlin E McNally, Francis Parlange, Andrea Riba, Stefan Roffler, Luisa K Schaefer, Kentaro K Shimizu, Luca Valenti, Helen Zbinden, Thomas Wicker & Beat Keller. Hybridization of powdery mildew strains gives raise to pathogens on novel agricultural crop species. Nature Genetics, 11 January 2016.
Doi: 10.1038/ng.3485.

University Research Priority Program “Evolution in action”
This research project was carried out as part of the University Research Priority Program (URPP) “Evolution in action”. The University Research Priority Program “Evolution in action” examines evolutionary mechanisms using state-of-the-art methods from genomics and bioinformatics. Researchers from eight institutes and three faculties at the University of Zurich are involved in the projects of the URPP “Evolution in action”.

Weitere Informationen:

http://www.mediadesk.uzh.ch/articles/2015/pilz-befaellt-neue-getreideart-dank-ev...

Melanie Nyfeler | Universität Zürich

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>