Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017

UMass Amherst microbiologists, international team show fungal deconstruction of wood

Twenty years ago, microbiologist Barry Goodell, now a professor at the University of Massachusetts Amherst, and colleagues discovered a unique system that some microorganisms use to digest and recycle wood. Three orders of "brown rot fungi" have now been identified that can break down biomass, but details of the mechanism were not known.


Basidiomycota brown rot fungi use a non-enzymatic, chelator-mediated biocatalysis method to digest woody biomass that is very different than methods used by any other microorganism studied, say Barry Goodell and colleagues at UMass Amherst, working with an international team.

Credit: Karel Tejkal, used with permission

Now, using several complementary research tools, Goodell and colleagues report new details of this unexpected mechanism at work, one that surprisingly does not involve enzymes, the usual accelerators of chemical reactions. Instead, Basidiomycota brown rot fungi, use a non-enzymatic, chelator-mediated biocatalysis method that is "very different than that used by any other microorganism studied," he says. Chelators are organic compounds that bind metal ions, and in this case, they also generate "hydroxyl radicals" to break down wood and produce simple building-block chemicals.

Described by collaborators at Oak Ridge National Laboratory as "a paradigm shift in understanding fungal biocatalysis for biomass conversion," the findings appear in the current issue of Biotechnology for Biofuels. Goodell says, "Our research on fungal bioconversion systems looks at a novel mechanism that has potential use in bio-refineries to 'deconstruct' woody biomass for conversion into platform chemicals for biopolymers or energy products."

Brown rot fungi appear in both the northern and southern hemispheres and are some of the most common decay fungi in North America. Because they evolved relatively recently, there are fewer brown rot species compared to older white rot species. "However, because of their efficiency in degrading wood, brown rot fungi have come to dominate, particularly in degrading softwoods," Goodell says, and they now dominate by recycling approximately 80 percent of the softwood biomass carbon in the world, found mostly in the great forests of the northern hemisphere.

Goodell points out that most microorganisms use enzymes to break down compounds, but enzymes are huge molecules and physiologically "expensive" to produce because they contain so much nitrogen. "Scientists used to think that these fungi would make holes in the cell wall that would let in the big enzymes," he notes, a sort of pretreatment model. "But as we explain here, that is not how it works."

"The fungi we study use a non-enzymatic, catalytic chelator-mediated Fenton system instead, a very simple process that makes use of hydrogen peroxide, also generated by the fungal system, and iron found in the environment," Goodell says. He adds that he and colleagues believe the brown rot fungi's efficiency comes from their use of the chelator-mediated Fenton system rather than the use of enzymes exclusively, as white rot fungi do.

Goodell notes, "This group of brown rot fungi figured out how to generate hydroxyl radicals at a distance, that is, away from the fungus, to keep them away so the radicals won't damage themselves while breaking down wood." Hydroxyl radicals are very damaging to cells, the most potent oxidizing agents known in biological systems.

For this work, Goodell and colleagues including his collaborator Jody Jellison, now director of the Center for Agriculture, Food and the Environment at UMass Amherst, used a suite of investigative methods including small angle neutron scattering (SANS), sum frequency generation (SFG) spectroscopy, Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) to fully describe the process.

Goodell says, "These fungi do produce a limited number of enzymes, but they come into play after the non-enzymatic action conversion by the fungi using chelators. The chelators are secondary metabolites, whose function is not easily followed using 'omics' techniques such as genomics. Using many advanced techniques though, we saw that some very small, low-molecular-weight compounds were working their way into the cell wall. This new paper describes how."

Goodell and Jellison relate a process that begins with the fungi in the lumen - the hollow space found inside plant cells. Using their hyphae, thread-like growth filaments, the fungi then mount a biochemical attack on the wood cell components.

As Goodell explains, "This group of fungi evolved a way to break down the wood substrate by first diffusing chelators into the cell wall. The fungus makes the chelator and produces hydrogen peroxide from oxygen, and together they start to digest the cell wall into the sugar found in the basic building block of wood, glucose, which the fungus can use as food. This is how these fungi are eating the wood."

###

Goodell and Jellison's collaborators include scientists at the Chinese Academy of Sciences, Beijing; Pennsylvania State University; Swansea University, U.K.; University of Agricultural Science, Uppsala, Sweden; Tokyo University of Agriculture and Technology; USDA Forest Service Southern Research Station, Pineville, La., and Oak Ridge National Laboratory, Tenn. Funding was from these organizations and the U.S. Department of Energy, and USDA National Institute of Food and Agriculture.

Media Contact

Janet Lathrop
jlathrop@umass.edu
413-545-0444

 @umassscience

http://www.umass.edu 

Janet Lathrop | EurekAlert!

Further reports about: biomass enzymes fungi fungus hydrogen peroxide hydroxyl radicals microorganisms radicals

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>