Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Functioning Brain Follows Famous Sand Pile Model

24.06.2015

Experiments show for the first time that the model describes activity in brain tissue processing sensory input

One of the deep problems in understanding the brain is to understand how relatively simple computing units (the neurons), collectively perform extremely complex operations (thinking).


Shutterstock

Does the brain respond to input the same way a sand pile responds to the addition of more sand? New research supports this outlandish but durable proposal.

In 1999 Danish scientist Per Bak made the startling proposal that the brain worked in much the same way as a sand pile. As more sand is added to the pile, many small avalanches keep the entire pile stable. Similarly, electrical avalanches in the brain hold it at a balance point, or critical point, where information processing is optimized.

The model is intuitively attractive and experiments with isolated slices of brain tissue have indeed shown that spontaneous electrical activity displays the statistical hallmarks of criticality, which seems to be the brain’s normal, or resting, state.

But there was a piece missing, said Ralf Wessel, PhD, associate professor of physics at Washington University in St. Louis. “On the one hand, the hypothesis was that, at criticality, the brain is optimized for computation. On the other hand, people had only studied brain tissue that wasn’t actually doing anything,” he said.

“We wondered what would happen if the brain had a job to do, if there were sensory input it had to process. Would the brain still operate at criticality?“

To find out Wessel’s lab at Washington University and Woodrow Shew’s lab at the University of Arkansas collaborated to monitor electrical activity in the visual cortex when a series of moving images played across the retina.

As they report in the DATE issue of Nature Physics, the sensory input momentarily pushed the cortex away from criticality but, no matter what the input, the cortex spontaneously returned to the critical regime.

“The system naturally adapts to input,” said Shew, an assistant professor of physics at the University of Arkansas, “tuning itself back into a good state for handling the input and making sense of it.”

“In the future, brain dynamics might serve as a biomarker for health or disease,” said Yahya Karimipanah, a graduate student in physics in Arts & Sciences at Washington University in St. Louis and a co-author on the paper.

“When people are sleep-deprived,” he said, recordings indicate the electrical activity in their brains is subcritical. On the other hand, the uncontrolled firing during an epileptic seizure is a manifestation of supercritical dynamics.

Talking about criticality
The concept of criticality is central to the model. To explain criticality Wessel uses the metaphor of a game played on a checkerboard of cells. “Suppose each cell of the checkerboard can hold up to three grains of sand before it ‘topples.’ When the fourth grain is added, the cell adds a grain of sand to each of its neighbors and if any of these neighbors are ‘full’ they redistribute sand to their neighbors as well.

A neuron is like a square in the checkerboard, he said. It sums its inputs and once it reaches a threshold, it fires, sometimes causing connected neurons to fire as well. “In that sense,” he said, “the checkerboard model is a perfect metaphor for the dynamics of the brain.”

At the start of the game, communication is very local. An avalanche travels only two or three cells and then stops. But when every cell is ‘loaded,’ there’s a very good chance that an avalanche will travel across the network.

Criticality, Wessel said, is in the “Goldilocks region,” where the brain is neither too sluggish nor too reactive. Its hallmark is firing avalanches that follow what is known as a power law, where smaller avalanches occur more frequently than larger ones.

The checkerboard is subcritical when many of the squares hold few grains of sand and the addition of a grain doesn’t trigger an avalanche. It is supercritical when most of the cells have three grains already, so when a grain is added — boom — the activity travels everywhere.

“The checkerboard game illustrates how you can end up with something incredibly complex, by repeating the same simple rule over and over again,” Wessel said.

Shew explains that the shift from subcritical to supercritical dynamics in the checkerboard game is a version of a phase transition . “We experience phase transitions every day,” he said, “when liquid water evaporates and turns into vapor or freezes and turns into ice. Your brain can go through a phase transition, as well,” he said, “and that’s a bit more surprising, right?”

“Of course I don’t mean that the brain can melt or freeze, but it can switch from orderly to disorderly behavior,” he said. “Both states or phases are less than optimal. An epileptic seizure is an example of an extreme level of order; all your neurons are doing the same thing together and that’s not good. You need a little bit of disorder for your brain to work effectively.”

“In this paper we describe what happens to the visual system when you drive it really hard. Intense visual input pushes it into one of these phases that’s not computationally effective, at least briefly. But there’s a natural process by which it adapts, tuning itself so that it is back to a state where it can make sense of the input.”

“That state is right at the boundary between two phases,” he said. “That’s what we mean by criticality, the tipping point between two very different ways of working. Somehow this system tunes itself not to one phase or the other but into the boundary between two phases.”

“That’s a surprising thing,” he said.

This explanation for how the brain works might seem outlandish at first, but on reflection it makes sense that a brain able to read a map one moment and identify Bach’s Sonata No. 1 in G minor would seek a dynamic tipping point where it would be poised to nimbly adjust to changes in input.

MY BRAIN IS GOING TO HEXPLODE To get some idea of how sand pile model works, try playing Hexplode, a game that follows the same basic rule as the sand pile model. https://www.agens.no/goodoldtimes/hexplode.com/

Contact Information
Diana Lutz
Senior Science Editor
dlutz@wustl.edu
Phone: 314-935-5272

Diana Lutz | newswise
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>