Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Full-annual-cycle models track migratory bird populations throughout the year

05.03.2015

Ignoring the wintering ranges of migratory birds when studying their populations is like doing a puzzle with half of the pieces missing. In a new Review published this week in The Auk: Ornithological Advances, Jeffrey Hostetler and his colleagues show how statistical analysis can fill in those missing pieces.

Many birds spend only a few months of the year in their breeding range before leaving to spend the winter in another region or even on another continent, and models that only make use of data from one season may not paint a complete picture; climate change, in particular, is likely to affect breeding, migratory, and winter ranges in different ways.

For this reason, Jeffrey Hostetler, T. Scott Sillett, and Peter P. Marra of the Smithsonian Migratory Bird Center have written the first comprehensive review of the different types of full-annual-cycle modeling approaches available to ecologists, including suggestions for potential improvements and the best model types for different situations.

This Review highlights the importance of incorporating data from all parts of migratory birds' annual movements when developing demographic models to study changes in their populations.

"In discussions over the past several years, biologists repeatedly have expressed the need for full-annual-cycle models that would enable decisions about how best to target strategic conservation action," explains Hostetler.

"Writing this paper provided an opportunity for me to explore both models that I was very familiar with and those that I was less familiar with, as well as share my own thoughts on what full-annual-cycle modeling techniques are most useful for conservation and ecological research." He adds that much of the work in this area so far has been theoretical due to the lack of real-world data tracking bird populations as they move between different parts of their range.

"As scientists' ability to track migratory animals throughout the year continues to improve, we expect that these models will increasingly be applied."

"As our knowledge of interactions between different components of avian annual cycles rapidly grows, it is critical that we integrate this knowledge into how we model population dynamics," according to Ohio State University professor Chris Tonra, an expert on migratory birds' seasonal interactions who was not involved with the paper. "This Review marks a giant step forward applying the basic science of full annual cycle studies to understanding the nature of population limitation and regulation necessary for managing and conserving migratory birds."

"Full-annual-cycle population models for migratory birds" is an open-access article available at

http://www.aoucospubs.org/doi/full/10.1642/AUK-14-211.1.

About the journal:

The Auk: Ornithological Advances is a peer-reviewed, international journal of ornithology. The journal has been the official publication of the American Ornithologists' Union since 1884. In 2009, The Auk was honored as one of the 100 most influential journals of biology and medicine over the past 100 years, and currently holds the top impact factor among ornithological journals.

Media Contact

Jeffrey Hostetler
hostetlerj@si.edu

http://www.aoucospubs.org 

Jeffrey Hostetler | EurekAlert!

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>