Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Stench to Resource

03.04.2014

Production of sulfur and hydrogen: splitting hydrogen sulfide with solar energy

No one who has cracked open a rotten egg will forget its infernal stench. Biofuel plants, sewage treatment plants, and petroleum refineries can generate substantial amounts of foul-smelling hydrogen sulfide gas, which is highly toxic at higher concentrations.

In the journal Angewandte Chemie, a team of Australian and Chinese researchers has now introduced an innovative photoelectrochemical process in which solar energy is used to split this undesirable by-product into sulfur and hydrogen, converting it to a source of raw materials.

A variety of techniques have been used to remove hydrogen sulfide (H2S) from polluted exhaust gases and occasionally put it to further use. While sulfur can be extracted in some processes, the hydrogen cannot. This is unfortunate because hydrogen is actually an important energy source for future fuel-cell technology.

... more about:
»Hydrogen »electrons »protons »redox »sulfide »sulfur »sunlight

Unfortunately, it isn’t possible to split H2S to gain hydrogen and sulfur simultaneously. Approaches using photochemical splitting seem particularly attractive because solar energy could be used to meet the high energy demand of this reaction.

However, no ecologically and economically feasible process has been found to date. This could now change thanks to a new approach developed by a team headed by Lianzhou Wang (University of Queensland, Australia) and Can Li (Chinese Academy of Sciences and Dalian Laboratory for Clean Energy, China).

Their success lies in a photochemical–chemical loop whose reactions are coupled through a redox pair. A redox pair is a combination of the reduced and oxidized form of the same element that can easily be interconverted. For their process, the researchers used either divalent and trivalent iron ions (Fe2+/Fe3+) or the iodide/triiodide (I/I3) system.

The hydrogen sulfide gas is introduced into the electrolyte of the anodic compartment of an electrochemical cell. Here, a chemical reaction causes it to be bound to the oxidized form of the redox pair (which is thus reduced) and converted to sulfur, which precipitates out as a yellow solid, and hydrogen cations (protons).

The protons can pass through the semipermeable membrane that separates the anodic and cathodic compartments. The second reaction is photoelectrochemical: as protons are reduced at the cathode by taking up electrons, the reduced form of the redox pair is returned to its oxidized state by giving up electrons at the anode. The driving force for this is sunlight, which generates “electron–hole pairs” at the photoanode. These holes can then be filled by the absorbed electrons.

The redox pairs continuously cycle between the oxidized and reduced forms so that the overall reaction is the splitting of hydrogen sulfide into sulfur and hydrogen by sunlight.

About the Author

Dr. Lianzhou Wang is a Professor at the School of Chemical Engineering and Research Director of Nanomaterials Centre, the University of Queensland (UQ), Australia. His main research interests include the design and development of semiconducting nanomaterials for applications in renewable energy conversion/storage systems, including photocatalysis, new-generation solar cells, and rechargeable batteries.

Author: Lianzhou Wang, University of Queensland (Australia), http://www.nanomac.uq.edu.au/lianzhou-wang

Title: An Integrated Photoelectrochemical–Chemical Loop for Solar-Driven Overall Splitting of Hydrogen Sulfide

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201400571

Lianzhou Wang | Angewandte Chemie International Edition

Further reports about: Hydrogen electrons protons redox sulfide sulfur sunlight

More articles from Life Sciences:

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

nachricht Bio-fabrication of Artificial Blood Vessels with Laser Light
28.08.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>