Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer IGB joins international consortium to advance organ-on-a-chip technology in Europe

01.11.2017

The consortium led by Leiden University Medical Center and the Dutch hDMT (human Disease Model Technologies) has been assigned by the EU with the task to create a roadmap for the future development of organ-on-chip technology. Its aim is to establish a European infrastructure to enable coordinated development, production and implementation of organ-on-a-chip systems. The consortium is funded by the EU FET-Open Program and brings together six leading European research institutions, including the Fraunhofer-Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart, Germany.

The consortium’s aim is to accelerate the societal and economic impact of organ-on-a-chip technology through coordinated action. Organs-on-chips combine human mini-organs with microelectronics, microfluidics and nanosensors.


Microphysiological organ-on-a-chip system.

Fraunhofer IGB

This technology is already providing new platforms for drug discovery but is poised to deliver applications in personalized medicine and safety pharmacology, and offers alternatives to conventional animal testing. Over the next two years, the EU will invest 0.5 million Euros in the ORgan-on-CHip In Development (ORCHID) project.

ORCHID will facilitate dialogue and documentation towards accelerating the development of prototypes of organs-on-chips, validated cell systems that mimic diseased or healthy human tissue, and implementation of this technology by a broad group of potential users in science, health care and industry.

Within the consortium, the Fraunhofer IGB will focus on the economic and educational aspects of the ORCHID project. Dr. Peter Loskill, head of the institute’s research group on organ-on-a-chip systems, and his team will evaluate which skills are essential for the development and application of organ-on-a-chip technology.

On this basis, it is possible to identify specific training contents for the further education of researchers, developers, and users. A further task of Dr. Loskill and his team will be the assessment of suitable business models for the commercialization of organ-on-a-chip systems, taking advantage of the extensive economic expertise of the Fraunhofer IGB as an application-oriented research institute.

Ultimately, ORCHID will build an infrastructure for scientists, policy makers, funders and end-users to join the decision-making processes that will direct future European developments in organ-on-a-chip applications. An essential contribution of ORCHID will be the establishment of a digital platform enabling knowledge sharing between researchers and representatives of private corporations including insurance companies, pharmaceutical and biotech companies, food industry, health foundations and patient organizations.

The ORCHID platform will provide overviews and updates of current and new organ-on-a-chip initiatives so that users can track progress easily, consult developers directly and identify gaps in present knowledge, limiting implementation. ORCHID will also address ethical and regulatory issues, particularly concerning personalized information, economic and societal impact, training of researchers, and the design of an R&D roadmap.

The consortium is composed of the following organizations:

- Leiden University Medical Center, the Netherlands; coordinator contact: Christine Mummery, PhD, Professor of Developmental Biology, Chair Dept. of Anatomy

- Organ-on-Chip consortium hDMT, the Netherlands; strategy and the roadmap contact: Janny van den Eijnden van Raaij, PhD, Managing director

- Fraunhofer IGB, Germany; Peter Loskill, PhD, Attract Group Manager Organ-on-a-chip, Department of Cell and Tissue Engineering

- CEA LETI, France; eco-system development and the digital platform contact: Adrienne Pervès PhD, Deputy Head of Department-LETI-Technologies for biology and health

- Imec, Belgium; ethical aspects, regulation and standardization contact: Wolfgang Eberle, PhD, Funded Program Manager Smart Health and NERF Coordinator EIT Health

- University of Zaragoza, Spain; dissemination contact: Luis Fernandez, PhD, Professor Mechanical Engineering, Dept. of Applied Mechanics and Bioengineering

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 766884

Weitere Informationen:

https://www.igb.fraunhofer.de/en/press-media/press-releases/2017/orchid.html

Dr. Claudia Vorbeck | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>