Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Four new algae species discovered in Hawaii's deep waters

03.02.2016

Scientists working with NOAA's Office of National Marine Sanctuaries announced the discovery of four new species of deep-water algae from Hawaii. Marine algae, or limu, are very important in Hawaiian culture, used in foods, ceremonies and as adornments in traditional hula. The new species of limu were collected between 200-400 feet, depths not typically known for marine algae.

Heather Spalding, Ph.D., postdoctoral researcher at the University of Hawaii Department of Botany and lead author of the study, said, "I was astounded at the abundance and size of these algae, which resembled something you would see in a shallow-water lagoon, not at 400 feet."


New species of deep-water algae was photographed by a SCUBA diver at 200 feet at Kure Atoll in Papahanaumokuakea Marine National Monument.

Credit: Daniel Wagner/NOAA

Spalding has been collaborating with NOAA's Office of National Marine Sanctuaries for several years studying samples collected by NOAA divers working in Papahanaumokuakea Marine National Monument. She and her colleagues at the University of Hawaii and University of Washington's Friday Harbor Laboratories conducted DNA analyses that showed that the species are very different than those found in Hawaii's shallow waters, even though they are very similar in appearance.

"If you picked up one of these algae on the beach, you couldn't tell if it was from a nearby rock or washed up from the deep, the species look that similar," Spalding said.

The newly discovered species are similar in appearance to limu palahalaha (Ulva lactuca), or sea lettuce. Scientists consulted with the Native Hawaiian community to develop meaningful names for the new species to honor the great importance they have in Hawaiian culture. One species was named Ulva iliohaha, which refers to the foraging behavior of ilioholoikauaua, the endangered Hawaiian monk seal, one of the best-known residents of Papahanaumokuakea.

The species were sampled during surveys between 2013 and 2015 in Papahanaumokuakea Marine National Monument by NOAA divers using advanced SCUBA diving technologies, and during past NOAA expeditions from 2006 to 2014 throughout the Main Hawaiian Islands using submersibles operated by the Hawaii Undersea Research Laboratory. Scientists anticipate that many additional new species of algae will be described in the coming years from samples collected by NOAA divers on future expeditions to the monument.

"These findings redefine our understanding of algal distributions in Hawaii, and hint at the great number of other new species that are likely to be discovered in the future from these amazing deep-water reefs," said Daniel Wagner, Papahanaumokuakea research specialist with NOAA's Office of National Marine Sanctuaries.

###

The study describing the new species of limu was published in the latest issue of the Journal of Phycology. The article, titled "New Ulvaceae (Ulvophyceae, Chlorophyta) from mesophotic ecosystems across the Hawaiian Archipelago," is featured as the journal's cover story and can be accessed in its entirety at http://onlinelibrary.wiley.com/doi/10.1111/jpy.12375/full.

Images are available at http://sanctuaries.noaa.gov/news/press/new-algae-species-discovered/.

Papahanaumokuakea is cooperatively managed to ensure ecological integrity and achieve strong, long-term protection and perpetuation of Northwestern Hawaiian Island ecosystems, Native Hawaiian culture, and heritage resources for current and future generations. Three co-trustees - the Department of Commerce, Department of the Interior, and State of Hawaii - joined by the Office of Hawaiian Affairs, protect this special place. Papahanaumokuakea Marine National Monument was inscribed as the first mixed (natural and cultural) UNESCO World Heritage Site in the United States in July 2010. For more information, please visit http://www.papahanaumokuakea.gov.

Media Contact

Keeley Belva
keeley.belva@noaa.gov
301-713-3066

 @NOAA

Keeley Belva | EurekAlert!

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>