Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forever Young

08.12.2015

Senescence, the decay of a living body with age, is not inevitable for all species, as a long-term experiment with the freshwater polyp Hydra proves

The common perception that the bodies of all living beings age, is wrong. This has now been proved by scientists of the Max Planck Institute for Demographic Research in Rostock by a long-term experiment with the freshwater polyp Hydra, a microscopic animal. Observing many hundreds of them for almost ten years, they calculated that Hydra’s mortality permanently stays constant and extremely low.


The freshwater polyp Hydra doesn’t age.

Photo: MPIDR

For most species, including humans, the probability of dying within a specific year rises with age. Scientists regard this as an indicator of the decay of the aging body. For Hydra, evolution seems to have found a way to escape the mechanisms of the physical deterioration of getting older. Researchers around MPIDR director James Vaupel and Daniel Martínez (Pomona College, Claremont, California, USA) have now published their findings in the science journal PNAS.

“Our findings are a fundamental challenge to common theories of the evolution of aging,” says MPIDR demographer Ralf Schaible. According to these theories, all multicellular species capable of repeated breeding inevitably decay physically when getting old.

Demographers have two ways of measuring this. On the one hand, fertility rates decrease markedly after a period of reproduction during early adulthood. On the other hand, after maturity the risk of dying increases considerably.

For humans the probability of dying within one year is reaching levels as high as 50 percent for advanced ages. For Hydra, however, it remains constant at a low 0.6 percent. Humans only experience such small values when they are between 20 and 30 years old. Additionally, Hydra’s reproduction rate did not diminish with age, instead the small animals continued to breed. In this sense the Rostock Hydra stayed forever young.

In the institute’s basement lab, the polyps outlive their researchers

In a unique long-term experiment MPIDR researchers created artificial conditions for the tiny water animals with their flimsy tentacles, which were free of fatal natural threats like predators. For almost ten years they have cared for about 1,800 of the Hydras in a laboratory in the basement of the institute in Rostock.

Each polyp lives in its own small glass dish exposed to a natural day-and-night cycle in special cabinets that are kept at a constant temperature of 18 degrees Celsius. Three times a week they are fed exactly the same amount of food.

Their care keeps a whole team of scientists and assistants busy. With razor-thin pipettes they place tiny shellfish right into the almost transparent tentacles of each individual polyp. Since the researchers started their experiment in March 2006 the Hydra spawned asexually by budding. All offspring are placed into their own glass dish and equally fed and pampered.

Self-repairing the body is Hydra’s secret of eternal youth

Overall, the team has counted 3.9 million observation days of individual Hydra. The number of natural deaths per year, however, can be counted on one hand. On average there have been only five. When a Hydra passed away it was mostly due to laboratory accidents, such as a polyp sticking to the lid of its bowl and then drying up or simply having been dropped on the floor. From of the few natural deaths that remained Jutta Gampe, Maciej Dańko and colleagues calculated Hydra’s mortality.

It is so low that even several lifetimes of researchers would not suffice to observe the end of the lifecycle of the polyps. Even after 500 years five percent of a cohort will still be alive. For two out of twelve of the Hydra cohorts under investigation, the risk of death was actually so small, that it will take 3,000 years until only five percent of the polyps remained.

“Hydra apparently manages to keep its body young because it does not senesce by accumulating damages and mutations, as most other living beings do,” says MPIDR biodemographer Alexander Scheuerlein. “Hydra are probably able to follow a special self-preservation strategy, as its body and cellular processes are rather simple,” says Scheuerlein.

For instance, Hydra are capable of completely replacing parts of the body that are damaged or are somehow lost. It can even fully regenerate if its body is destroyed almost completely thanks to a high number of stem cells. Stem cells are capable of developing into any part of the body at any time. Additionally, as Hydra replaces all of their cells within only four weeks, it regularly and quickly expels all cells that have been changed genetically by mutations. Thus, damages have little chance to accumulate.

About the MPIDR

The Max Planck Institute for Demographic Research in Rostock (MPIDR) investigates the structure and dynamics of populations. It focuses on issues of political relevance such as demographic change, aging, fertility, the redistribution of work over the course of life, as well as aspects of evolutionary biology and medicine. The MPIDR is one of the largest demographic research bodies in Europe and one of the worldwide leaders in the field. It is part of the Max Planck Society, the internationally renowned German research society.

Contact
Ralf Schaible – MPIDR author of the article (speaks German and English)
PHONE +49 381 2081 – 263
E-MAIL schaible@demogr.mpg.de

Alexander Scheuerlein – MPIDR author of the article (speaks German and English)
PHONE +49 381 2081 – 212
E-MAIL scheuerlein@demogr.mpg.de

James Vaupel – MPIDR author of the article (speaks English)
PHONE +49 381 2081 – 103
E-MAIL jwv@demogr.mpg.de

Silvia Leek – MPIDR Press Department
PHONE +49 381 2081 – 143
E-MAIL presse@demogr.mpg.de

This press release and pictures in high resolution can be found at www.demogr.mpg.de/go/hydra

Original publication: Ralf Schaible, Alexander Scheuerlein, Maciej J. Dańko, Jutta Gampe, Daniel
E. Martínez, James W. Vaupel, “Constant Mortality and Fertility over Age in Hydra“, PNAS,
http://www.pnas.org/cgi/doi/10.1073/pnas.1521002112

Weitere Informationen:

http://www.demogr.mpg.de

Silvia Leek | Max-Planck-Institut für demografische Forschung

Further reports about: Demographic Research Hydra PNAS fertility polyps risk of death species

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>