Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For female mosquitoes, two sets of odor sensors are better than one

20.03.2017

Biologists who study the malaria mosquito's 'nose' have found that it contains a secondary set of odor sensors that seem to be specially tuned to detect humans. The discovery could aid efforts to figure out how the insects target humans and develop a preference for them.

If you could peer into the mind of a female mosquito, you would find that her world is dominated by smell rather than sight or sound.


This scanning electron microscope image of the head of a female Anopheles mosquito shows the antennae, proboscis and palps that contain its olfactory system.

Credit: Zwiebel Lab, Vanderbilt University

She follows whiffs of carbon dioxide exhaled by animals to locate potential prey. As she closes in on a target, she uses the animal's body odors to decide whether it is a desirable host. After getting the blood meal she needs to reproduce, she follows the scent of stagnant water to find a place to lay her eggs.

Her delicate antennae, proboscis and a pair of mouth appendages called palps are what make this possible. They are covered by tiny hollow sensory hairs called sensilla that are filled with an impressive array of odor sensors that can discriminate among thousands of different aromatic compounds.

For the last 15 years, a team of biologists at Vanderbilt University have been studying a family of 79 odorant receptors (ORs) in the malaria mosquito (Anopheles gambiae) in hopes of finding better repellents and lures that can be used to prevent the spread of malaria and other mosquito-borne diseases.

As the researchers meticulously determined the specific compounds that triggered these receptors, however, they were surprised to discover that the Anopheles ORs did not respond to many of the smelly human odors that they know mosquitoes can detect.

The scientists think they now have a handle on at least one of the reasons for this disparity. In a paper published earlier this year in the journal Scientific Reports they report that the malaria mosquito has a second complete system of odor sensors - discovered five years ago in the fruit fly (Drosphila melanogaster) - that are specially tuned to at least two human-derived chemical signals, which the insect's OR system cannot detect. So adult females use this second system of odor sensors to seek human prey.

"This appears to be a more primitive olfactory system and one which Anopheles uses to detect humans," said Cornelius Vanderbilt Professor of Biological Sciences Laurence Zwiebel, who directed the study. "It fills important gaps in the mosquito's chemosensory perception that are not provided by the OR system."

In a series of extensive and painstaking experiments carried out for his senior honors thesis, undergraduate Stephen L. Derryberry (now a student at the Vanderbilt School of Medicine), along with Research Assistant Professor Jason Pitts, succeeded in functionally characterizing three of these different sensors, called ionotropic receptors (IRs), in Anopheles. The researchers determined that unique combinations of IRs respond to two classes of compounds found in human sweat: carboxylic acids that impart a vinegary tang and ammonia derivatives called amines.

"Stephen's project was more difficult than simply searching for a needle in a haystack," Zwiebel said. "It was more like searching for a needle in a HUGE haystack, because we had no idea of what odorant molecules would trigger the IR system. Even worse, we didn't know what combinations of IR receptors might be involved." (In flies IRs only detect target molecules in conjunction with co-receptors on the same neuron.)

There is still a great deal about the IR system that the scientists don't understand. For example, they think the mosquitoes may also use this ancient family of proteins to detect infrared radiation and humidity levels.

One measure of the importance of an olfactory system is the number of connections it has to the brain. By this measure the OR system is the most important because it has more neurons that link it to the mosquito's brain, but the IR system runs a close second.

"The mosquito is an extremely sophisticated organism," said Pitts. "They use a combination of finely tuned olfactory systems to locate their prey. We have now found two of these systems, but, based on what we know about the mosquito's genome, we think there are others that we haven't identified yet."

"Despite all the research we have done, we still haven't fully figured out how mosquitoes identify and, even more importantly, develop a preference for humans," Zwiebel observed.

###

The research was supported by National Institutes of Health grant AI056402.

David F Salisbury | EurekAlert!

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>