Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flourishing faster: How to make trees grow bigger and quicker

16.04.2015

Scientists at The University of Manchester have discovered a way to make trees grow bigger and faster, which could increase supplies of renewable resources and help trees cope with the effects of climate change.

In the study, published in Current Biology, the team successfully manipulated two genes in poplar trees in order to make them grow larger and more quickly than usual.


This image shows a section of a poplar tree that has had its genes modified so cells divide quicker.

Credit: Professor Simon Turner

Professor Simon Turner from the Faculty of Life Sciences led the research: "The rate at which trees grow is determined by the rate of cell division in the stem. We have identified two genes that are able to drive cell division in the stem and so override the normal growth pattern.

"Although, this needs be tested in the field, this discovery paves the way for generating trees that grow more quickly and so will contribute to meeting the needs for increased plant biomass as a renewable source of biofuels, chemicals and materials while minimising further CO2 release into the atmosphere."

The genes, called PXY and CLE, control the growth of a tree trunk. When overexpressed, making them more active than in their normal state, the trees grew twice as fast as normal and were taller, wider and had more leaves.

As well as the potential to increase biomass supplies for the growing biofuel and industrial biotechnology sectors, the discovery could help plants deal with the environmental consequences of climate change.

Professor Turner adds: "Our work offers the possibility we may be able to maintain a fast growth rate even in the face of adverse and changeable environmental conditions that all plants are likely to be faced with.

"Most plants, including crops, respond to adverse environmental conditions with lower growth rates that result in correspondingly lower yields. Understanding how the plants respond to environmental signals and to what extent we are able to manipulate them to override these signals is likely to be very important for continued improvements to crop performance. In future it may be possible that manipulating the expression of the PXY and CLE genes can override environmental signals that normally alter plant growth.

"This is something that needs to be tested in the field, but offers a potential way forward for what is one of the most pressing challenges of the day."

The team now plans to work with a forest products company to test their findings in the field.

The work builds on a previous study from 2010 in which the team identified the role of the genes involved, in the plant Arabidopsis.

###

The study was funded by the Biotechnology and Biological Sciences Research Council.

Media Contact

Morwenna Grills
Morwenna.Grills@manchester.ac.uk
44-016-127-52111

 @UoMNews

http://www.manchester.ac.uk 

Morwenna Grills | EurekAlert!

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>